Magnetic properties of twisted bilayer magnetic thin films with interlayer dipolar interaction
Tài liệu tham khảo
Melzer, 2015, Imperceptible magnetoelectronics, Nat. Commun., 6, 6080, 10.1038/ncomms7080
Prudnikov, 2021, Simulation of hysteresis phenomena in multilayer magnetic nanostructures, J. Phys. Conf. Ser., 1740, 10.1088/1742-6596/1740/1/012011
Lv, 2018, Phase diagrams and magnetic properties of a ferrimagnetic Ising bilayer superlattice: a Monte Carlo study, J. Magn. Magn. Mater., 465, 348, 10.1016/j.jmmm.2018.06.011
Du, 2006, Magnetization and magnetic susceptibility of the Ising ferromagnetic/antiferromagnetic superlattice, J. Magn. Magn. Mater., 305, 233, 10.1016/j.jmmm.2006.01.007
Song, 2018, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science, 360, 1214, 10.1126/science.aar4851
Dev, 2022, Oblique angle deposited FeCo multilayered nanocolumnar structure: Magnetic anisotropy and its thermal stability in polycrystalline thin films, Appl. Surf. Sci., 590, 10.1016/j.apsusc.2022.153056
Lei, 2021, Gate-tunable quantum anomalous Hall effects in MnBi2Te4 thin films, Phys. Rev. Mater., 5, L051201, 10.1103/PhysRevMaterials.5.L051201
Jiang, 2012, Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film, Phys. Rev. B, 85, 10.1103/PhysRevB.85.045445
Liu, 2022, Recent research advances in two-dimensional magnetic materials, Acta Phys. Sin., 71
Burch, 2018, Magnetism in two-dimensional van der Waals materials, Nature, 563, 47, 10.1038/s41586-018-0631-z
Gibertini, 2019, Magnetic 2D materials and heterostructures, Nat. Nanotechnol., 14, 408, 10.1038/s41565-019-0438-6
Huang, 2017, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 546, 270, 10.1038/nature22391
Gong, 2017, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature, 546, 265, 10.1038/nature22060
Zhang, 2019, Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3, Nano Lett., 19, 3138, 10.1021/acs.nanolett.9b00553
Chen, 2019, Direct observation of van der Waals stacking–dependent interlayer magnetism, Science, 366, 983, 10.1126/science.aav1937
Kim, 2019, Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides, Proc. Natl. Acad. Sci., 116, 11131, 10.1073/pnas.1902100116
Zhang, 2019, Ultrathin Magnetic 2D Single-Crystal CrSe, Adv. Mater., 31, 1900056, 10.1002/adma.201900056
Cai, 2019, Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator, Nano Lett., 19, 3993, 10.1021/acs.nanolett.9b01317
Lee, 2016, Ising-Type Magnetic Ordering in Atomically Thin FePS3, Nano Lett., 16, 7433, 10.1021/acs.nanolett.6b03052
Gong, 2019, Experimental Realization of an Intrinsic Magnetic Topological Insulator*, Chin. Phys. Lett., 36
Jiang, 2010, Effects of anisotropy on quantum fluctuation of a three-layer system with mutisublattice, Chin. Phys. B, 19, 499, 10.1088/1674-1056/19/12/127502
Qiu, 2011, Resonance frequency in ferromagnetic superlattices, J. Phys. D-Appl. Phys., 44, 10.1088/0022-3727/44/41/415002
Feraoun, 2015, Phase diagrams and magnetic properties of a superlattice with alternate layers, J. Magn. Magn. Mater., 377, 126, 10.1016/j.jmmm.2014.10.062
Xiao, 2020, Moiré is More: Access to New Properties of Two-Dimensional Layered Materials, Matter, 3, 1142, 10.1016/j.matt.2020.07.001
Andrei, 2020, Graphene bilayers with a twist, Nat. Mater., 19, 1265, 10.1038/s41563-020-00840-0
Balents, 2020, Superconductivity and strong correlations in moiré flat bands, Nat. Phys., 16, 725, 10.1038/s41567-020-0906-9
Xu, 2022, Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3, Nat. Nanotechnol., 17, 143, 10.1038/s41565-021-01014-y
Cao, 2020, Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene, Nature, 583, 215, 10.1038/s41586-020-2260-6
Hua, 2023, Magnon corner states in twisted bilayer honeycomb magnets, Phys. Rev. B, 107, L020404, 10.1103/PhysRevB.107.L020404
Song, 2019, All Magic Angles in Twisted Bilayer Graphene are Topological, Phys. Rev. Lett., 123, 10.1103/PhysRevLett.123.036401
Mørup, 2010, Magnetic interactions between nanoparticles, Beilstein, Journal of Nanotechnology, 1, 182
Basak, 2023, Theoretical studies on electronic, magnetic and optical properties of two dimensional transition metal trihalides, J. Phys. Condens. Matter, 35, 10.1088/1361-648X/acbffb
Hussain, 2022, Dipole-exchange spin waves in two-dimensional van der Waals ferromagnetic films and stripes, J. Phys. Condens. Matter, 34, 10.1088/1361-648X/ac8a82
Shindou, 2013, Chiral spin-wave edge modes in dipolar magnetic thin films, Phys. Rev. B, 87, 10.1103/PhysRevB.87.174402
Anand, 2022, Magnetic relaxation in two dimensional assembly of dipolar interacting nanoparticles, J. Magn. Magn. Mater., 552, 10.1016/j.jmmm.2022.169201
Anand, 2021, Thermal and dipolar interaction effect on the relaxation in a linear chain of magnetic nanoparticles, J. Magn. Magn. Mater., 522, 10.1016/j.jmmm.2020.167538
Žutić, 2019, Proximitized materials, Mater. Today, 22, 85, 10.1016/j.mattod.2018.05.003
C. Gong, X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363 (2019) eaav4450.
Butler, 2013, Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano, 7, 2898, 10.1021/nn400280c
Tarnopolsky, 2019, Origin of Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.106405
Belenkov, 2022, Modeling the structure and interlayer interactions of twisted bilayer graphene, Fullerenes, Nanotubes, Carbon Nanostruct., 30, 152, 10.1080/1536383X.2021.1981295
Tan, 2014, Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power, Phys. Rev. B, 90, 10.1103/PhysRevB.90.214421
Nishino, 2015, Realization of the thermal equilibrium in inhomogeneous magnetic systems by the Landau-Lifshitz-Gilbert equation with stochastic noise, and its dynamical aspects, Phys. Rev. B, 91, 10.1103/PhysRevB.91.134411
Hinzke, 2015, Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys, Phys. Rev. B, 92, 10.1103/PhysRevB.92.054412
Wang, 2019, Simulation of the AC susceptibility for nano-ferromagnetic materials, Mater. Res. Express, 6
Chui, 1995, Finite Temperature Transitions in 2D Dipolar Systems with Uniaxial Anisotropy, Phys. Rev. Lett., 74, 3896, 10.1103/PhysRevLett.74.3896
Liu, 2019, Magnetic interactions and magnetization reversal in anisotropic La-Nd-Fe-B/Ta/Co multilayers and disks, J. Magn. Magn. Mater., 489, 10.1016/j.jmmm.2019.165476
Bailly-Reyre, 2021, Vortex structure in magnetic nanodots: Dipolar interaction, mobile spin model, phase transition and melting, J. Magn. Magn. Mater., 528, 10.1016/j.jmmm.2021.167813
Toga, 2016, Monte Carlo analysis for finite-temperature magnetism of Nd2Fe14B permanent magnet, Phys. Rev. B, 94
Wang, 2012, Atomistic Molecular Dynamic Simulations of Multiferroics, Phys. Rev. Lett., 109
Wang, 2020, Simulation of the Faraday effect for the core–shell magnetic nanowire, J. Magn. Magn. Mater., 511, 10.1016/j.jmmm.2020.166591
J.D. Agudelo-Giraldo, O. Moscoso Londoño, A.A. Velásquez-Salazar, E. Restrepo-Parra, Grain size influence upon magnetic behavior at nanoscale. A computational approach, Journal of Magnetism and Magnetic Materials 515 (2020) 167296.
Cadilhe, 2016, Real-space, mean-field algorithm to numerically calculate long-range interactions, Physica A, 444, 327, 10.1016/j.physa.2015.10.032
Mól, 2014, The phase transition in the anisotropic Heisenberg model with long range dipolar interactions, J. Magn. Magn. Mater., 353, 11, 10.1016/j.jmmm.2013.10.023
Chafai, 2012, Magnetic studies of spin wave in fe/ag multilayer films, J. Supercond. Nov. Magn., 25, 117, 10.1007/s10948-011-1217-2
Anand, 2021, Hysteresis in two dimensional arrays of magnetic nanoparticles, J. Magn. Magn. Mater., 540, 10.1016/j.jmmm.2021.168461
Anand, 2021, Dipolar interaction and sample shape effects on the hysteresis properties of 2d array of magnetic nanoparticles, Pramana, 95, 181, 10.1007/s12043-021-02222-w
Jin, 2013, Magnetic Physics. Science Press. Beijing., 283
Cao, 2023, Simulation of the AC susceptibility for a core–shell magnetic nanoparticle, J. Magn. Magn. Mater., 565, 10.1016/j.jmmm.2022.170144