Magnetic properties of twisted bilayer magnetic thin films with interlayer dipolar interaction

Journal of Magnetism and Magnetic Materials - Tập 588 - Trang 171374 - 2023
Yue Hu1, An Du1,2
1College of Science, Northeastern University, Shenyang, 110819, China
2National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China

Tài liệu tham khảo

Melzer, 2015, Imperceptible magnetoelectronics, Nat. Commun., 6, 6080, 10.1038/ncomms7080 Prudnikov, 2021, Simulation of hysteresis phenomena in multilayer magnetic nanostructures, J. Phys. Conf. Ser., 1740, 10.1088/1742-6596/1740/1/012011 Lv, 2018, Phase diagrams and magnetic properties of a ferrimagnetic Ising bilayer superlattice: a Monte Carlo study, J. Magn. Magn. Mater., 465, 348, 10.1016/j.jmmm.2018.06.011 Du, 2006, Magnetization and magnetic susceptibility of the Ising ferromagnetic/antiferromagnetic superlattice, J. Magn. Magn. Mater., 305, 233, 10.1016/j.jmmm.2006.01.007 Song, 2018, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science, 360, 1214, 10.1126/science.aar4851 Dev, 2022, Oblique angle deposited FeCo multilayered nanocolumnar structure: Magnetic anisotropy and its thermal stability in polycrystalline thin films, Appl. Surf. Sci., 590, 10.1016/j.apsusc.2022.153056 Lei, 2021, Gate-tunable quantum anomalous Hall effects in MnBi2Te4 thin films, Phys. Rev. Mater., 5, L051201, 10.1103/PhysRevMaterials.5.L051201 Jiang, 2012, Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film, Phys. Rev. B, 85, 10.1103/PhysRevB.85.045445 Liu, 2022, Recent research advances in two-dimensional magnetic materials, Acta Phys. Sin., 71 Burch, 2018, Magnetism in two-dimensional van der Waals materials, Nature, 563, 47, 10.1038/s41586-018-0631-z Gibertini, 2019, Magnetic 2D materials and heterostructures, Nat. Nanotechnol., 14, 408, 10.1038/s41565-019-0438-6 Huang, 2017, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 546, 270, 10.1038/nature22391 Gong, 2017, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature, 546, 265, 10.1038/nature22060 Zhang, 2019, Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3, Nano Lett., 19, 3138, 10.1021/acs.nanolett.9b00553 Chen, 2019, Direct observation of van der Waals stacking–dependent interlayer magnetism, Science, 366, 983, 10.1126/science.aav1937 Kim, 2019, Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides, Proc. Natl. Acad. Sci., 116, 11131, 10.1073/pnas.1902100116 Zhang, 2019, Ultrathin Magnetic 2D Single-Crystal CrSe, Adv. Mater., 31, 1900056, 10.1002/adma.201900056 Cai, 2019, Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator, Nano Lett., 19, 3993, 10.1021/acs.nanolett.9b01317 Lee, 2016, Ising-Type Magnetic Ordering in Atomically Thin FePS3, Nano Lett., 16, 7433, 10.1021/acs.nanolett.6b03052 Gong, 2019, Experimental Realization of an Intrinsic Magnetic Topological Insulator*, Chin. Phys. Lett., 36 Jiang, 2010, Effects of anisotropy on quantum fluctuation of a three-layer system with mutisublattice, Chin. Phys. B, 19, 499, 10.1088/1674-1056/19/12/127502 Qiu, 2011, Resonance frequency in ferromagnetic superlattices, J. Phys. D-Appl. Phys., 44, 10.1088/0022-3727/44/41/415002 Feraoun, 2015, Phase diagrams and magnetic properties of a superlattice with alternate layers, J. Magn. Magn. Mater., 377, 126, 10.1016/j.jmmm.2014.10.062 Xiao, 2020, Moiré is More: Access to New Properties of Two-Dimensional Layered Materials, Matter, 3, 1142, 10.1016/j.matt.2020.07.001 Andrei, 2020, Graphene bilayers with a twist, Nat. Mater., 19, 1265, 10.1038/s41563-020-00840-0 Balents, 2020, Superconductivity and strong correlations in moiré flat bands, Nat. Phys., 16, 725, 10.1038/s41567-020-0906-9 Xu, 2022, Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3, Nat. Nanotechnol., 17, 143, 10.1038/s41565-021-01014-y Cao, 2020, Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene, Nature, 583, 215, 10.1038/s41586-020-2260-6 Hua, 2023, Magnon corner states in twisted bilayer honeycomb magnets, Phys. Rev. B, 107, L020404, 10.1103/PhysRevB.107.L020404 Song, 2019, All Magic Angles in Twisted Bilayer Graphene are Topological, Phys. Rev. Lett., 123, 10.1103/PhysRevLett.123.036401 Mørup, 2010, Magnetic interactions between nanoparticles, Beilstein, Journal of Nanotechnology, 1, 182 Basak, 2023, Theoretical studies on electronic, magnetic and optical properties of two dimensional transition metal trihalides, J. Phys. Condens. Matter, 35, 10.1088/1361-648X/acbffb Hussain, 2022, Dipole-exchange spin waves in two-dimensional van der Waals ferromagnetic films and stripes, J. Phys. Condens. Matter, 34, 10.1088/1361-648X/ac8a82 Shindou, 2013, Chiral spin-wave edge modes in dipolar magnetic thin films, Phys. Rev. B, 87, 10.1103/PhysRevB.87.174402 Anand, 2022, Magnetic relaxation in two dimensional assembly of dipolar interacting nanoparticles, J. Magn. Magn. Mater., 552, 10.1016/j.jmmm.2022.169201 Anand, 2021, Thermal and dipolar interaction effect on the relaxation in a linear chain of magnetic nanoparticles, J. Magn. Magn. Mater., 522, 10.1016/j.jmmm.2020.167538 Žutić, 2019, Proximitized materials, Mater. Today, 22, 85, 10.1016/j.mattod.2018.05.003 C. Gong, X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363 (2019) eaav4450. Butler, 2013, Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano, 7, 2898, 10.1021/nn400280c Tarnopolsky, 2019, Origin of Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.106405 Belenkov, 2022, Modeling the structure and interlayer interactions of twisted bilayer graphene, Fullerenes, Nanotubes, Carbon Nanostruct., 30, 152, 10.1080/1536383X.2021.1981295 Tan, 2014, Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power, Phys. Rev. B, 90, 10.1103/PhysRevB.90.214421 Nishino, 2015, Realization of the thermal equilibrium in inhomogeneous magnetic systems by the Landau-Lifshitz-Gilbert equation with stochastic noise, and its dynamical aspects, Phys. Rev. B, 91, 10.1103/PhysRevB.91.134411 Hinzke, 2015, Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys, Phys. Rev. B, 92, 10.1103/PhysRevB.92.054412 Wang, 2019, Simulation of the AC susceptibility for nano-ferromagnetic materials, Mater. Res. Express, 6 Chui, 1995, Finite Temperature Transitions in 2D Dipolar Systems with Uniaxial Anisotropy, Phys. Rev. Lett., 74, 3896, 10.1103/PhysRevLett.74.3896 Liu, 2019, Magnetic interactions and magnetization reversal in anisotropic La-Nd-Fe-B/Ta/Co multilayers and disks, J. Magn. Magn. Mater., 489, 10.1016/j.jmmm.2019.165476 Bailly-Reyre, 2021, Vortex structure in magnetic nanodots: Dipolar interaction, mobile spin model, phase transition and melting, J. Magn. Magn. Mater., 528, 10.1016/j.jmmm.2021.167813 Toga, 2016, Monte Carlo analysis for finite-temperature magnetism of Nd2Fe14B permanent magnet, Phys. Rev. B, 94 Wang, 2012, Atomistic Molecular Dynamic Simulations of Multiferroics, Phys. Rev. Lett., 109 Wang, 2020, Simulation of the Faraday effect for the core–shell magnetic nanowire, J. Magn. Magn. Mater., 511, 10.1016/j.jmmm.2020.166591 J.D. Agudelo-Giraldo, O. Moscoso Londoño, A.A. Velásquez-Salazar, E. Restrepo-Parra, Grain size influence upon magnetic behavior at nanoscale. A computational approach, Journal of Magnetism and Magnetic Materials 515 (2020) 167296. Cadilhe, 2016, Real-space, mean-field algorithm to numerically calculate long-range interactions, Physica A, 444, 327, 10.1016/j.physa.2015.10.032 Mól, 2014, The phase transition in the anisotropic Heisenberg model with long range dipolar interactions, J. Magn. Magn. Mater., 353, 11, 10.1016/j.jmmm.2013.10.023 Chafai, 2012, Magnetic studies of spin wave in fe/ag multilayer films, J. Supercond. Nov. Magn., 25, 117, 10.1007/s10948-011-1217-2 Anand, 2021, Hysteresis in two dimensional arrays of magnetic nanoparticles, J. Magn. Magn. Mater., 540, 10.1016/j.jmmm.2021.168461 Anand, 2021, Dipolar interaction and sample shape effects on the hysteresis properties of 2d array of magnetic nanoparticles, Pramana, 95, 181, 10.1007/s12043-021-02222-w Jin, 2013, Magnetic Physics. Science Press. Beijing., 283 Cao, 2023, Simulation of the AC susceptibility for a core–shell magnetic nanoparticle, J. Magn. Magn. Mater., 565, 10.1016/j.jmmm.2022.170144