Magnetic properties of nanocrystalline powder cores fabricated by mechanically crushed powders

Springer Science and Business Media LLC - Tập 22 - Trang 67-71 - 2015
Chun-bo Huang1,2, Tian-cheng Liu1,2, Xiang-yue Wang1,2, Cao-wei Lu1,2, De-ren Li1,2, Zhi-chao Lu1,2
1China Iron and Steel Research Institute Group, Beijing, China
2Advanced Technology and Materials Co., Ltd., Beijing, China

Tóm tắt

Fe73.5Cu1Nb3Si15.5B7 nanocrystalline powder cores with different particle sizes ranging from 10 to 125 µm were fabricated by cold-pressing techniques. The cores exhibited increased core loss Pcv and decreased initial permeability µi with addition of fine powders below 50 µm in size, and the content should be less than 40 mass%. It was thought to be closely related to the high coercive force Hc due to the stresses generated during the crushing process and high demagnetization fields of small powders. Furthermore, modifying the alloy compositions by adding defined amount of Ni could improve the soft magnetic properties, including superior characteristics of permeability under high direct current (DC) bias field and comparable low core loss at high frequency.

Tài liệu tham khảo

X. Y. Wang, C. W. Lu, F. Guo, Z. C. Lu, D. R. Li, S. X. Zhou, J. Magn. Magn. Mater. 324 (2012) 2727–2730. R. W. Wang, J. Liu, Z. Wang, Z. H. Gan, Z. D. Xiang, Z. H. Lu, Y. B. Li, D. J. Wang, J. Yuan, Y. H. Wang, J. Non. Cryst. Solids. 358 (2012) 200–203. E. K. Cho, H. T. Kwon, E. M. Cho, Y. S. Song, K. Y. Sohn, W. W. Park, Mater. Sci. Eng. A 449–451 (2007) 368–370. G. H. Kim, T. H. Noh, G. B. Choi, K. Y. Kim, J. Appl. Phys. 93 (2003) 7211–7213. Y. B. Kim, K. K. Jee, G. B. Choi, J. Appl. Phys. 103 (2008) 07E704. M. Anhalt, B. Weidenfeiler, J. Appl. Phys. 105 (2009) 113903. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988) 6044–6046. J. Zhou, Y. F. Cui, H. S. Liu, W. Wang, K. Peng, Y. D. Xiao, J. Mater. Sci. 46 (2011) 7567–7572. H. Y. Choi, S. J. Ahn, T. H. Noh, Phys. Status. Solidi. A 201 (2004) 1879–1882. C.B. Huang, T. C. Liu, X. Y. Wang, C. W. Lu, D. R. Li, Z. C. Lu, J. Iron Steel Res. Int. 21 (2014) 348–351. Y. K. Lee, Y. B. Kim, K. K. Jee, G. B. Choi, Phys. Status. Solidi. A 204 (2007) 4100–4103. R. Nowosielski, J. J. Wyslocki, I. Wnuk, P. Gramatyka, J. Mater. Process. Technol. 175 (2006) 324–329. M. Mvller, A. Novy, M. Brunner, R. Hilzinger, J. Magn. Magn. Mater. 196–197 (1999) 357–358. Y. C. Niu, X. F. Bian, W. M. Wang, J. Non. Cryst. Solids. 341 (2004) 40–45. T. H. Kim, K. K. Jee, Y. B. Kim, D. J. Byun, J. H. Han, J. Magn. Magn. Mater. 322 (2010) 2423–2427. D. Nuetzel, G. Rieger, J. Wecker, J. Petzold, M. Mueller, J. Magn. Magn. Mater. 196–197 (1999) 327–329. M. Ohnuma, D. H. Ping, T. Abe, H. Onodera, K. Hono, Y. Yoshizawa, J. Appl. Phys. 93 (2003) 9186–9194. Y. Yoshizawa, S. Fujii, D. H. Ping, M. Ohnuma, K. Hono, Scripta Mater. 48 (2003) 863–868.