Magnetic geodesics on surfaces with singularities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Branding, V, Hanisch, F: Magnetic geodesics via the heat flow. arxiv:1411.6848, to appear In: Asian Journal of Mathematics. https://arxiv.org/abs/1411.6848 .
Contreras, G, Macarini, L, Paternain, G: Periodic orbits for exact magnetic flows on surfaces. Int. Math. Res. Not. 8, 361–387 (2004).
Fujimori, S, Saji, K, Umehara, M, Yamada, K: Singularities of maximal surfaces. Math. Zeit. 259, 827–848 (2008).
Fujimori, S, Kim, YW, Koh, S-E, Rossman, W, Shin, H, Umehara, M, Yamada, K, Yang, S-D: Zero mean curvature surfaces in Lorentz-Minkowski 3-space and 2-dimensional fluid dynamics. Math. J. Okayama Univ. 57, 173–200 (2015).
Ginzburg, V: On closed trajectories of a charge in a magnetic field. Appl. Symplectic Geom. Contact Symplectic Geom. (Camb). 8, 131–148 (1994).
Ginzburg, VL: On the existence and non-existence of closed trajectories for some Hamiltonian flows. Mathematische Zeitschrift. 223(3), 397–409 (1996).
Gu, CH: The extremal surfces in the 3-dimensional Minkowski spaces. Acta Math. Sinica (new series). 1(2), 173–180 (1985).
Klyachin, VA: Zero mean curvature surfaces of mixed type in Minkowski space. Izv. Math. 67, 209–224 (2003).
Kobayashi, O: Maximal Surfaces in the 3-Dimensional Minkowski Space L3. Tokyo J. Math. 6(2), 297–309 (1983).
Miranda, JAG: Generic properties for magnetic flows on surfaces. Nonlinearity. 19(8), 1849–1874 (2006).
Schneider, M: Closed magnetic geodesics on closed hyperbolic Riemann surfaces. Proc. Lond. Math. Soc. 105(3), 424–446 (2012).
Schneider, M, Rosenberg, H: Embedded constant curvature curves on convex surfaces. Pac. J. Math. 253, 213–219 (2011).