Magnetic geodesics on surfaces with singularities

Volker Branding1, Wayne Rossman2
1Faculty of Mathematics, University of Vienna, Vienna, Austria
2Department of Mathematics, Faculty of Science, University of Kobe, Rokko, Kobe, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Branding, V, Hanisch, F: Magnetic geodesics via the heat flow. arxiv:1411.6848, to appear In: Asian Journal of Mathematics. https://arxiv.org/abs/1411.6848 .

Contreras, G, Macarini, L, Paternain, G: Periodic orbits for exact magnetic flows on surfaces. Int. Math. Res. Not. 8, 361–387 (2004).

Fujimori, S, Saji, K, Umehara, M, Yamada, K: Singularities of maximal surfaces. Math. Zeit. 259, 827–848 (2008).

Fujimori, S, Kim, YW, Koh, S-E, Rossman, W, Shin, H, Umehara, M, Yamada, K, Yang, S-D: Zero mean curvature surfaces in Lorentz-Minkowski 3-space and 2-dimensional fluid dynamics. Math. J. Okayama Univ. 57, 173–200 (2015).

Ginzburg, V: On closed trajectories of a charge in a magnetic field. Appl. Symplectic Geom. Contact Symplectic Geom. (Camb). 8, 131–148 (1994).

Ginzburg, VL: On the existence and non-existence of closed trajectories for some Hamiltonian flows. Mathematische Zeitschrift. 223(3), 397–409 (1996).

Gu, CH: The extremal surfces in the 3-dimensional Minkowski spaces. Acta Math. Sinica (new series). 1(2), 173–180 (1985).

Klyachin, VA: Zero mean curvature surfaces of mixed type in Minkowski space. Izv. Math. 67, 209–224 (2003).

Kobayashi, O: Maximal Surfaces in the 3-Dimensional Minkowski Space L3. Tokyo J. Math. 6(2), 297–309 (1983).

Miranda, JAG: Generic properties for magnetic flows on surfaces. Nonlinearity. 19(8), 1849–1874 (2006).

Schneider, M: Closed magnetic geodesics on S2. J. Differential Geom. 87, 343–388 (2011).

Schneider, M: Closed magnetic geodesics on closed hyperbolic Riemann surfaces. Proc. Lond. Math. Soc. 105(3), 424–446 (2012).

Schneider, M, Rosenberg, H: Embedded constant curvature curves on convex surfaces. Pac. J. Math. 253, 213–219 (2011).

Taimanov, IA: Periodic magnetic geodesics on almost every energy level via variational methods. Regul. Chaotic Dyn. 15(4–5), 598–605 (2010).