Magnetic field and temperature dependence of the groundstate energy of weak-coupling magnetopolaron in quantum rods with hydrogenic impurity

Optoelectronics Letters - Tập 8 - Trang 237-240 - 2012
Xin Xiao1, Wuyunqimuge2, Chao Han1, Eerdunchaolu1
1Institute of Condensed Matter Physics, Hebei Normal University of Science & Technology, Qinhuangdao, China
2College of Physics and Electronic Information Inner Mongolia University for Nationalities, Tongliao, China

Tóm tắt

The dependence of the ground-state properties of weak-coupling bound magnetopolarons in quantum rods (QRs) with hydrogenic impurity on magnetic field and temperature is studied by means of the Lee-Low-Pines (LLP) transformation method and Huybrechts linear combination operator method. The expression for the ground-state energy of the magnetopolaron is derived. Results of the numerical calculations show that the ground-state energy of weak-coupling bound magnetopolarons in QRs with hydrogenic impurity increases with increasing the cyclotron frequency of the magnetic field, the confinement strength of QRs and the temperature, but decreases with increasing the electron-phonon coupling strength and the dielectric constant ratio. The stability of the ground state of magnetopolarons is closely related to the aspect ratio e′ of the QR. The ground state of magnetopolarons is the most stable at e′ =1. The stability of the ground state of magnetopolarons can remarkably decrease when the value of the aspect ratio increases or decreases from 1.

Tài liệu tham khảo

XU Jian-ping, SHI Shao-bo, ZHANG Xiao-song and LI Lan, Journal of Optoelectronics · Laser 21, 1593 (2010). (in Chinese) ZHANG Xiao-Song, LI Lan, HUANG Qing-song, ZHANG Gao-feng, XU Jian-ping, XUAN Rong-wei and WEI Fengwei, Journal of Optoelectronics · Laser 22, 1 (2011). (in Chinese) X. W. Zhang and J. B. Xia, Chin. J. Semiconductors 27, 2094 (2006). (in Chinese) Jiangtao Hu, Lin-wang Wang, Liang-shi Li, Weidong Yang and A. Paul Alivisatos, J. Phys. Chem. B 106, 2447 (2002). X. W. Zhang, Y. H. Zhu and J. B. Xia, Physica E 33, 376 (2006). J. I. Climente, M. Royo, J. L. Movilla and J. Planelles, Phys. Rev. B 79, 161301 (2009). Ci L. Fai, V. Teboul, A. Monteil, S. Maabou and I. Nsangou, Condensed Matter Physics 8, 639 (2005). F. Comas, N. Studart and G. E. Marques, Solid State Commun. 130, 477 (2004). J. L. Xiao and C. L. Zhao, Superlattices Microstruct. 49, 9 (2011). J. L. Xiao and Z. H. Ding, J. Low Temp. Phys. 163, 302 (2011). J. Huybrechts, J. Phys. C: Solid State Phys. 9, L211 (1976). T. D. Lee, F. M. Low and D. Pines, Phys. Rev. 90, 297 (1953). M. A. Brummell, R. J. Nicholas, M. A. Hopkins, J. J. Harris and C. T. Foxon, Phys. Rev. Lett. 58, 77 (1987).