Magnetic control of tokamak plasmas through deep reinforcement learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hofmann, F. et al. Creation and control of variably shaped plasmas in TCV. Plasma Phys. Control. Fusion 36, B277 (1994).
Coda, S. et al. Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond. Nucl. Fusion 59, 112023 (2019).
Anand, H., Coda, S., Felici, F., Galperti, C. & Moret, J.-M. A novel plasma position and shape controller for advanced configuration development on the TCV tokamak. Nucl. Fusion 57, 126026 (2017).
Mele, A. et al. MIMO shape control at the EAST tokamak: simulations and experiments. Fusion Eng. Des. 146, 1282–1285 (2019).
Anand, H. et al. Plasma flux expansion control on the DIII-D tokamak. Plasma Phys. Control. Fusion 63, 015006 (2020).
Walker, M. L. & Humphreys, D. A. Valid coordinate systems for linearized plasma shape response models in tokamaks. Fusion Sci. Technol. 50, 473–489 (2006).
Blum, J., Heumann, H., Nardon, E. & Song, X. Automating the design of tokamak experiment scenarios. J. Comput. Phys. 394, 594–614 (2019).
Ferron, J. R. et al. Real time equilibrium reconstruction for tokamak discharge control. Nucl. Fusion 38, 1055 (1998).
Moret, J.-M. et al. Tokamak equilibrium reconstruction code LIUQE and its real time implementation. Fusion Eng. Des. 91, 1–15 (2015).
Xie, Z., Berseth, G., Clary, P., Hurst, J. & van de Panne, M. Feedback control for Cassie with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1241–1246 (IEEE, 2018).
Akkaya, I. et al. Solving Rubik’s cube with a robot hand. Preprint at https://arxiv.org/abs/1910.07113 (2019).
Bellemare, M. G. et al. Autonomous navigation of stratospheric balloons using reinforcement learning. Nature 588, 77–82 (2020).
Humphreys, D. et al. Advancing fusion with machine learning research needs workshop report. J. Fusion Energy 39, 123–155 (2020).
Bishop, C. M., Haynes, P. S., Smith, M. E., Todd, T. N. & Trotman, D. L. Real time control of a tokamak plasma using neural networks. Neural Comput. 7, 206–217 (1995).
Joung, S. et al. Deep neural network Grad-Shafranov solver constrained with measured magnetic signals. Nucl. Fusion 60, 16034 (2019).
van de Plassche, K. L. et al. Fast modeling of turbulent transport in fusion plasmas using neural networks. Phys. Plasmas 27, 022310 (2020).
Abbate, J., Conlin, R. & Kolemen, E. Data-driven profile prediction for DIII-D. Nucl. Fusion 61, 046027 (2021).
Kates-Harbeck, J., Svyatkovskiy, A. & Tang, W. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature 568, 526–531 (2019).
Grad, H. & Rubin, H. Hydromagnetic equilibria and force-free fields. J. Nucl. Energy (1954) 7, 284–285 (1958).
Carpanese, F. Development of Free-boundary Equilibrium and Transport Solvers for Simulation and Real-time Interpretation of Tokamak Experiments. PhD thesis, EPFL (2021).
Abdolmaleki, A. et al. Relative entropy regularized policy iteration. Preprint at https://arxiv.org/abs/1812.02256 (2018).
Paley, J. I., Coda, S., Duval, B., Felici, F. & Moret, J.-M. Architecture and commissioning of the TCV distributed feedback control system. In 2010 17th IEEE-NPSS Real Time Conference 1–6 (IEEE, 2010).
Hommen, G. D. et al. Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak. Nucl. Fusion 54, 073018 (2014).
Austin, M. E. et al. Achievement of reactor-relevant performance in negative triangularity shape in the DIII-D tokamak. Phys. Rev. Lett. 122, 115001 (2019).
Kolemen, E. et al. Initial development of the DIII–D snowflake divertor control. Nucl. Fusion 58, 066007 (2018).
Anand, H. et al. Real time magnetic control of the snowflake plasma configuration in the TCV tokamak. Nucl. Fusion 59, 126032 (2019).
Wigbers, M. & Riedmiller, M. A new method for the analysis of neural reference model control. In Proc. International Conference on Neural Networks (ICNN’97) Vol. 2, 739–743 (IEEE, 1997).
Berkenkamp, F., Turchetta, M., Schoellig, A. & Krause, A. Safe model-based reinforcement learning with stability guarantees. In 2017 Advances in Neural Information Processing Systems 908–919 (ACM, 2017).
Wabersich, K. P., Hewing, L., Carron, A. & Zeilinger, M. N. Probabilistic model predictive safety certification for learning-based control. IEEE Tran. Automat. Control 67, 176–188 (2021).
Abdolmaleki, A. et al. On multi-objective policy optimization as a tool for reinforcement learning. Preprint at https://arxiv.org/abs/2106.08199 (2021).
Coda, S. et al. Overview of the TCV tokamak program: scientific progress and facility upgrades. Nucl. Fusion 57, 102011 (2017).
Karpushov, A. N. et al. Neutral beam heating on the TCV tokamak. Fusion Eng. Des. 123, 468–472 (2017).
Lister, J. B. et al. Plasma equilibrium response modelling and validation on JT-60U. Nucl. Fusion 42, 708 (2002).
Lister, J. B. et al. The control of tokamak configuration variable plasmas. Fusion Technol. 32, 321–373 (1997).
Ulyanov, D., Vedaldi, A. & Lempitsky, V. Instance normalization: the missing ingredient for fast stylization. Preprint at https://arxiv.org/abs/1607.08022 (2016).
Andrychowicz, M. et al. What matters in on-policy reinforcement learning? A large-scale empirical study. In ICLR 2021 Ninth International Conference on Learning Representations (2021).
Cassirer, A. et al. Reverb: a framework for experience replay. Preprint at https://arxiv.org/abs/2102.04736 (2021).
Hoffman, M. et al. Acme: a research framework for distributed reinforcement learning. Preprint at https://arxiv.org/abs/2006.00979 (2020).
Hofmann, F. FBT-a free-boundary tokamak equilibrium code for highly elongated and shaped plasmas. Comput. Phys. Commun. 48, 207–221 (1988).
Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In Proc. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16) 265–283 (2016).
De Tommasi, G. et al. Model-based plasma vertical stabilization and position control at EAST. Fusion Eng. Des. 129, 152–157 (2018).
Gerkšič, S. & De Tommasi, G. ITER plasma current and shape control using MPC. In 2016 IEEE Conference on Control Applications (CCA) 599–604 (IEEE, 2016).
Boncagni, L. et al. Performance-based controller switching: an application to plasma current control at FTU. In 2015 54th IEEE Conference on Decision and Control (CDC) 2319–2324 (IEEE, 2015).
Wakatsuki, T., Suzuki, T., Hayashi, N., Oyama, N. & Ide, S. Safety factor profile control with reduced central solenoid flux consumption during plasma current ramp-up phase using a reinforcement learning technique. Nucl. Fusion 59, 066022 (2019).
Wakatsuki, T., Suzuki, T., Oyama, N. & Hayashi, N. Ion temperature gradient control using reinforcement learning technique. Nucl. Fusion 61, 046036 (2021).
Seo, J. et al. Feedforward beta control in the KSTAR tokamak by deep reinforcement learning. Nucl. Fusion 61, 106010 (2021).
Yang, F. et al. Launchpad: a programming model for distributed machine learning research. Preprint at https://arxiv.org/abs/2106.04516 (2021).
Muldal, A. et al. dm_env: a Python interface for reinforcement learning environments. http://github.com/deepmind/dm_env (2019).
Reynolds, M. et al. Sonnet: TensorFlow-based neural network library. http://github.com/deepmind/sonnet (2017).
Martín A. et al. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://www.tensorflow.org/ 2015.
Hender, T. C. et al. Chapter 3: MHD stability, operational limits and disruptions. Nucl. Fusion 47, S128–S202 (2007).