Magnetic and Electronic Properties of Fe0.1Sc0.9N/ScN(001)/MgO(001) Films Grown by Radio-Frequency Molecular Beam Epitaxy

Springer Science and Business Media LLC - Tập 1198 - Trang 42-47 - 2009
Costel Constantin1, Kangkang Wang2, Abhijit Chinchore2, Han-Jong Chia3, John Markert3, Arthur R. Smith2
1Department of Physics, Seton Hall University, South Orange, USA
2Nanoscale & Quantum Phenomena Institute, Department of Physics and Astronomy, Ohio University, Athens, USA
3Department of Physics, University of Texas at Austin, Austin, USA

Tóm tắt

Fe0.1Sc0.9N with a thickness of ˜~ 380 nm was grown on top of a ScN(001) buffer layer of ˜~ 50 nm, grown on MgO(001) substrate by radio-frequency N-plasma molecular beam epitaxy (rf-MBE). The buffer layer was grown at TS ˜~ 800 °C, whereas the Fe0.1Sc0.9N(001) film was grown at TS ~˜ 420 °C. In-situ reflection high-energy electron diffraction measurements show that the Fe0.1Sc0.9N film growth starts with a combination of spotty and streaky pattern [indicative of a combination of smooth and rough surface]. After ˜~ 10 minutes of growth, the pattern converts to a spotty one [indicative of a rough surface]. Towards the end of the Fe0.1Sc0.9N film growth, the spotty patterns transform into even spottier, but also ring-like indicating a polycrystalline behavior. Superconducting quantum interference device magnetic measurements show a ferromagnetic to paramagnetic transition of TC ˜~ 370–380 K. We calculated a magnetic moment per atom of μ(Fe0.1Sc0.9N) = 0.037 Bohr magneton/Fe-atom. Based on the carrier concentration measurements (nS (Fe0.1Sc0.9N) = 2.086 × 1019 /cm3), we find that iron behaves as an acceptor. Comparisons are made with similar MnScN (001)/ScN(001)/MgO(001) system.

Tài liệu tham khảo

S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, H. Hori, J. Crys. Growth 237, 1358 (2002). M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, C. A. Parker, J. C. Roberts, S. M. Bedair, Appl. Phys. Lett. 79, 3473 (2001). N. Theodoropoulou, K. P. Lee, M. E. Overberg, S. N. G. Chu, A. F. Hebard, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, J. Nanosci. Nanotechnol. 1, 101 (2001). G. T. Thaler, M. E. Overberg, B. Gilla, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. d. Park, Z. G. Khim, J. Kim, and F. Ren, Appl. Phys. Lett. 80, 3964 (2002). M. B. Haider, C. Constantin, H. Al-Brithen, H. Yang, E. Trifan, D. Ingram, A. R. Smith, C. V. Kelly, and Y. Ijiri, J. Appl. Phys. 93, 5274 (2003). M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy, and A. F. Hebard, Appl. Phys. Lett. 79, 1312 (2001). M. B. Haider, C. Constantin, H. Al-Brithen, G. Caruntu, C. J. O”Conner, A. R. Smith, Phys. Stat. Solidi A 202:6, 1135 (2005). K. Sato, W. Schweika, P. H. Dederichs, and H. Katayama-Yoshida, Phys. Rev. B 70, 201202 (2004). H. Ohno, Science 281, 951–956 (1998). K.Y. Wang, R. P. Champion, K. W. Edmonds, M. Sawicki, T. Dietl, C. T. Foxon, B. L. Gallagher, AIP Conf. Proc. 772, 333–334 (2005). T. Jungwirth, K. Y. Wang, J. Masek, K. W. Edmonds, J. Konig, J. Sinova, M. Polini, N. A. Goncharuk, A. H. MacDonald, M. Sawicki, A. W. Rushforth, R. P. Campion, L. X. Zhao, C. T. Foxon, B. L. Gallagher, Phys. Rev. B 72 (16), 165204–13 (2005). K. M. Yu, W. Walukiewicz, T. Wojtowicz, W. L. Lim, X. Liu, Y. Sasaki, M. Dobrowolska, J. K. Furdyna, Appl. Phys. Lett. 81, 844 (2002). H. A. Al-Brithen, A. R. Smith, D. Gall, Physical Review B 70(4), 045303 (2004). W. R. Lambrecht, Phys. Rev. B 62, 13538 (2000). C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman, Phys. Rev. B 63, 155106 (2001). H. A. Al-Brithen, E. M. Trifan, D. C. Ingram, A. R. Smith, and D. Gall, J. Cryst. Growth 242, 345 (2002). A. R. Smith, H. A. H. Al-Brithen, D. C. Ingram, and D. Gall, J. Appl. Phys. 90, 1809 (2001). D. Gall, I. Petrov, L. D. Madsen, J. E. Sundgren, and J. E. Greene, Vac. Sci. Technol. A 16, 2411 (1998). H. A. AL-Brithen, H. Yang, A. R. Smith, J. Appl. Phys. 96(7), 3787 (2004). A. Herwadkar, W. R. L. Lambrecht, Phys. Rev. B 72 (23), 235207 (2005). A. Herwadkar, W. R. L. Lambrecht, M. van Schilfgaarde, Phys. Rev. B 77, 134433 (2008). A. Houari, S.F. Matar, M. A. Belkhir, Comp. Mat. Sci. 43 (2), 392 (2008). “Structural, magnetic and electronic properties of dilute MnScN(001) grown by rf nitrogen plasma molecular beam epitaxy” C. Constantin, K. Wang, A. Chinchore, A. R. Smith, H-J. Chia, John Markert, submitted to J. Phys. D: Appl. Phys.