Magnetic Resonance Imaging of Regional Hemodynamic and Cerebrovascular Recovery after Lateral Fluid-Percussion Brain Injury in Rats

Journal of Cerebral Blood Flow and Metabolism - Tập 31 Số 1 - Trang 166-177 - 2011
Nick Hayward1, Pasi Tuunanen1, Riikka Immonen1, Xavier Ekolle Ndode‐Ekane2, Asla Pitkänen2,3, Olli Gröhn1
1Biomedical Imaging Unit, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
2Department of Neurobiology, Epilepsy Research Group, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
3Department of Neurology, Kuopio University Hospital, Kuopio, Finland

Tóm tắt

Hemodynamic and cerebrovascular factors are crucially involved in secondary damage after traumatic brain injury (TBI). With magnetic resonance imaging, this study aimed to quantify regional cerebral blood flow (CBF) by arterial spin labeling and cerebral blood volume by using an intravascular contrast agent, during 14 days after lateral fluid-percussion injury (LFPI) in rats. Immunohistochemical analysis of vessel density was used to evaluate the contribution of vascular damage. Results show widespread ipsilateral and contralateral hypoperfusion, including both the cortex and the hippocampus bilaterally, as well as the ipsilateral thalamus. Hemodynamic unrest may partly be explained by an increase in blood vessel density over a period of 2 weeks in the ipsilateral hippocampus and perilesional cortex. Furthermore, three phases of perilesional alterations in CBF, progressing from hypoperfusion to normal and back to hypoperfusion within 2 weeks were shown for the first time in a rat TBI model. These three phases were similar to hemodynamic fluctuations reported in TBI patients. This makes it feasible to use LFPI in rats to study mechanisms behind hemodynamic changes and to explore novel therapeutic approaches for secondary brain damage after TBI.

Từ khóa


Tài liệu tham khảo

10.1002/jmri.1073

10.1016/S0925-4927(03)00109-4

10.3171/jns.1991.75.5.0685

10.1002/mrm.1910340412

10.1097/00000539-199504000-00007

10.1016/0006-8993(89)91190-6

10.1089/089771503322385755

10.1089/neu.1997.14.223

10.1097/00006123-199809000-00105

10.1002/mrm.10660

10.1097/00004647-199708000-00005

10.1111/j.1365-2990.1995.tb01062.x

Ginsberg MD, 1997, Am J Physiol, 272, H2859

10.1016/S0165-0173(02)00141-8

10.1093/jnen/59.8.641

10.1002/msj.20104

10.1093/bja/63.3.290

10.1038/jcbfm.1985.9

10.1089/neu.1995.12.903

10.1002/jmri.20352

10.1038/jcbfm.1987.131

10.3171/jns.1997.86.4.0633

10.1093/brain/awm268

10.1016/j.neuroscience.2006.03.012

10.3171/jns.1991.74.3.0407

10.3171/jns.1997.87.1.0009

10.1016/0306-4522(89)90247-9

10.1089/neu.1992.9.355

10.1016/j.neuroscience.2009.12.002

10.1089/neu.1996.13.201

10.1038/jcbfm.2008.151

10.1089/neu.2006.0136

Paxinos GT, 1998, The Rat Brain in Stereotaxic Coordinates

10.1089/neu.2006.23.241

10.1016/0165-3806(96)00098-3

10.3171/FOC.2008.25.10.E7

10.1097/00004647-200107000-00002

Robertson CL, 2000, Acta Neurochir Suppl, 76, 187

10.1016/j.mri.2006.09.018

10.1089/neu.1992.9.21

10.1089/08977150252932361

10.1089/neu.2005.22.42

10.1097/00001199-199912000-00009

10.1038/nm0298-159

10.1073/pnas.89.1.212

10.1038/jcbfm.1989.16

10.1089/neu.1988.5.289