Các hạt nano từ tính: Từ thiết kế và tổng hợp đến các ứng dụng thực tiễn

Nanomaterials - Tập 7 Số 9 - Trang 243
Jiří Kudr1,2, Yazan Haddad2, Lukáš Richtera1,2, Zbyněk Heger1,2, Mirko Černák3, Vojtěch Adam1,2, Ondřej Zítka1,2
1Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic
2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
3CEPLANT R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic

Tóm tắt

Sự gia tăng số lượng các công bố khoa học tập trung vào vật liệu từ tính cho thấy sự quan tâm ngày càng tăng trong cộng đồng khoa học rộng lớn hơn. Những tiến bộ đáng kể đã được thực hiện trong việc tổng hợp các vật liệu từ tính với kích thước, hình thái, thành phần hóa học và hóa học bề mặt mong muốn. Tính ổn định vật lý và hóa học của các vật liệu từ tính được gia tăng thông qua việc phủ bề mặt. Hơn nữa, các lớp bề mặt từ polyme, silica, phân tử sinh học, v.v. có thể được thiết kế để tạo ra sự ưa thích với các phân tử mục tiêu. Sự kết hợp giữa khả năng phản ứng với trường từ bên ngoài và những khả năng phong phú của các lớp phủ khiến cho các vật liệu từ tính trở thành công cụ linh hoạt cho việc tách biệt các phân tử nhỏ, phân tử sinh học và tế bào. Trong lĩnh vực y sinh, các hạt từ tính và các hợp chất từ tính được sử dụng làm phương tiện vận chuyển thuốc, làm chất tương phản cho chụp cộng hưởng từ (MRI) và trong liệu pháp nhiệt từ. Tuy nhiên, các hạt từ tính đa chức năng cho phép chẩn đoán và điều trị cùng một lúc đang nổi lên. Bài tổng quan này tóm tắt các phát hiện liên quan đến thiết kế và tổng hợp vật liệu từ tính tập trung vào các ứng dụng y sinh. Chúng tôi nhấn mạnh việc sử dụng vật liệu từ tính trong việc tách biệt/tập trung lại nhiều loại phân tử và tế bào, cũng như việc sử dụng chúng trong chẩn đoán và điều trị.

Từ khóa

#hạt nano từ tính #tổng hợp vật liệu từ tính #ứng dụng y sinh #tách biệt phân tử #phương tiện vận chuyển thuốc

Tài liệu tham khảo

Pankhurst, 2003, Applications of magnetic nanoparticles in biomedicine, J. Phys. D Appl. Phys., 36, 167, 10.1088/0022-3727/36/13/201

Katz, 2004, Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications, Angew. Chem. Int. Ed., 43, 6042, 10.1002/anie.200400651

Brigger, 2002, Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev., 54, 631, 10.1016/S0169-409X(02)00044-3

Caruthers, 2007, Nanotechnological applications in medicine, Curr. Opin. Biotechnol., 18, 26, 10.1016/j.copbio.2007.01.006

Bessalova, 2016, New approaches in the design of magnetic tweezers-current magnetic tweezers, J. Magn. Magn. Mater., 415, 66, 10.1016/j.jmmm.2016.03.038

Saha, 2015, Application-driven multi-layered particles—The role of polymers in the architectural design of particles, Polymer, 71, A1, 10.1016/j.polymer.2015.06.033

Zhang, 2008, Nanoparticles in medicine: Therapeutic applications and developments, Clin. Pharmacol. Ther., 83, 761, 10.1038/sj.clpt.6100400

Mura, 2013, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991, 10.1038/nmat3776

Danhier, 2010, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J. Control. Release, 148, 135, 10.1016/j.jconrel.2010.08.027

Blazkova, 2013, Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery, Int. J. Mol. Sci., 14, 13391, 10.3390/ijms140713391

Nasongkla, 2006, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems, Nano Lett., 6, 2427, 10.1021/nl061412u

Shubayev, 2009, Magnetic nanoparticles for theragnostics, Adv. Drug Deliv. Rev., 61, 467, 10.1016/j.addr.2009.03.007

Skalickova, S., Nejdl, L., Kudr, J., Ruttkay-Nedecky, B., Jimenez, A.M.J., Kopel, P., Kremplova, M., Masarik, M., Stiborova, M., and Eckschlager, T. (2016). Fluorescence characterization of gold modified liposomes with antisense N-myc DNA bound to the magnetisable particles with encapsulated anticancer drugs (doxorubicin, ellipticine and etoposide). Sensors, 16.

Zitka, 2013, Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine, Electrophoresis, 34, 2639, 10.1002/elps.201300114

Heger, 2015, 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein, Electrophoresis, 36, 1256, 10.1002/elps.201400559

Zitka, 2011, Microfluidic tool based on the antibody-modified paramagnetic particles for detection of 8-hydroxy-2′-deoxyguanosine in urine of prostate cancer patients, Electrophoresis, 32, 3207, 10.1002/elps.201100430

Krejcova, 2016, Fully automated two-step assay for detection of metallothionein through magnetic isolation using functionalized γ-Fe2O3 particles, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1039, 17, 10.1016/j.jchromb.2016.10.018

Jimenez, 2017, Gold nanoparticles-modified nanomaghemite and quantum dots-based hybridization assay for detection of HPV, Sens. Actuators B Chem., 240, 503, 10.1016/j.snb.2016.08.091

Michalek, 2016, A two-step protocol for isolation of influenza a (H7N7) virions and their RNA for PCRdiagnostics based on modified paramagnetic particles, Electrophoresis, 37, 2025, 10.1002/elps.201600044

Cihalova, 2017, Antibody-free detection of infectious bacteria using quantum dots-based barcode assay, J. Pharm. Biomed. Anal., 134, 325, 10.1016/j.jpba.2016.10.025

Cihalova, 2016, Particle-based immunochemical separation of methicillin resistant staphylococcus aureus with indirect electrochemical detection of labeling oligonucleotides, Anal. Methods, 8, 5123, 10.1039/C6AY01296E

Lee, 2011, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol., 6, 418, 10.1038/nnano.2011.95

Yoo, 2011, Theranostic magnetic nanoparticles, Acc. Chem. Res., 44, 863, 10.1021/ar200085c

Sun, 2002, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc., 124, 8204, 10.1021/ja026501x

Sun, 2004, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc., 126, 273, 10.1021/ja0380852

Baaziz, 2014, Magnetic iron oxide nanoparticles: Reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting, J. Phys. Chem. C, 118, 3795, 10.1021/jp411481p

Ho, 2011, Monodisperse magnetic nanoparticles for theranostic applications, Acc. Chem. Res., 44, 875, 10.1021/ar200090c

Gao, 2009, Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications, Acc. Chem. Res., 42, 1097, 10.1021/ar9000026

Dutz, 2014, Magnetic particle hyperthermia—A promising tumour therapy?, Nanotechnology, 25, 28, 10.1088/0957-4484/25/45/452001

Ito, 2005, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng., 100, 1, 10.1263/jbb.100.1

Ulbrich, 2016, Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies, Chem. Rev., 116, 5338, 10.1021/acs.chemrev.5b00589

Kohler, 2005, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir, 21, 8858, 10.1021/la0503451

Duong, 2013, Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions, Angew. Chem. Int. Ed., 52, 14152, 10.1002/anie.201306724

Hwu, 2009, Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles, J. Am. Chem. Soc., 131, 66, 10.1021/ja804947u

Tietze, 2013, Efficient drug-delivery using magnetic nanoparticles—Biodistribution and therapeutic effects in tumour bearing rabbits, Nanomed. Nanotechnol. Biol. Med., 9, 961, 10.1016/j.nano.2013.05.001

Yu, 2008, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed., 47, 5362, 10.1002/anie.200800857

Gautier, 2015, Efficacy and hemotoxicity of stealth doxorubicin-loaded magnetic nanovectors on breast cancer xenografts, J. Biomed. Nanotechnol., 11, 177, 10.1166/jbn.2015.1920

Haddad, Y., Xhaxhiu, K., Kopel, P., Hynek, D., Zitka, O., and Adam, V. (2016). The isolation of DNA by polycharged magnetic particles: An analysis of the interaction by zeta potential and particle size. Int. J. Mol. Sci., 17.

Mahmoudi, 2011, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Adv. Drug Deliv. Rev., 63, 24, 10.1016/j.addr.2010.05.006

Wu, 2008, Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies, Nanoscale Res. Lett., 3, 397, 10.1007/s11671-008-9174-9

Sun, 2008, Magnetic nanoparticles in MR imaging and drug delivery, Adv. Drug Deliv. Rev., 60, 1252, 10.1016/j.addr.2008.03.018

Veiseh, 2010, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug Deliv. Rev., 62, 284, 10.1016/j.addr.2009.11.002

Chomoucka, 2010, Magnetic nanoparticles and targeted drug delivering, Pharmacol. Res., 62, 144, 10.1016/j.phrs.2010.01.014

LaConte, 2005, Magnetic nanoparticle probes, Mater. Today, 8, 32, 10.1016/S1369-7021(05)00893-X

Shinkai, 2002, Functional magnetic particles for medical application, J. Biosci. Bioeng., 94, 606, 10.1016/S1389-1723(02)80202-X

Pankhurst, 2009, Progress in applications of magnetic nanoparticles in biomedicine, J. Phys. D Appl. Phys., 42, 224001, 10.1088/0022-3727/42/22/224001

Bae, 2010, Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging, Bioconjug. Chem., 21, 505, 10.1021/bc900424u

Dong, 1998, Characterization of ultrafine γ-Fe(C), α-Fe(C) and Fe3C particles synthesized by arc-discharge in methane, J. Mater. Sci., 33, 1915, 10.1023/A:1004369708540

Bychkova, 2012, Multifunctional biocompatible coatings on magnetic nanoparticles, Russ. Chem. Rev., 81, 1026, 10.1070/RC2012v081n11ABEH004280

Berry, 2009, Progress in functionalization of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys., 42, 224003, 10.1088/0022-3727/42/22/224003

Yu, 2013, Magnetic nanoparticle-based cancer therapy, Chin. Phys. B, 22, 027506, 10.1088/1674-1056/22/2/027506

Berry, 2003, Functionalisation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys., 36, R198, 10.1088/0022-3727/36/13/203

Lu, 2007, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866

Sun, E.Y., Josephson, L., and Weissleder, R. (2006). “Clickable” nanoparticles for targeted imaging. Mol. Imaging, 5.

Nandivada, 2007, Click chemistry: Versatility and control in the hands of materials scientists, Adv. Mater., 19, 2197, 10.1002/adma.200602739

Kouassi, 2006, Magnetic and gold-coated magnetic nanoparticles as a DNA sensor, Anal. Chem., 78, 3234, 10.1021/ac051621j

Robinson, 2010, Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA, Nanoscale, 2, 2624, 10.1039/c0nr00621a

Cheng, 2014, Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging, ACS Nano, 8, 9884, 10.1021/nn500188y

Grasset, 2001, Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5−xAlxO12 (0 ≤ x ≤ 2) garnet submicron particles for biomedical applications, J. Magn. Magn. Mater., 234, 409, 10.1016/S0304-8853(01)00386-9

Taketomi, 1993, Transparent magnetic fluid: Preparation of YIG ultrafine particles, J. Magn. Magn. Mater., 122, 6, 10.1016/0304-8853(93)91027-5

Grosseau, 1996, Elaboration de poudres de yig par coprecipitation, J. Therm. Anal., 46, 1633, 10.1007/BF01980769

Vaqueiro, 1997, Synthesis of yttrium iron garnet nanoparticlesvia coprecipitation in microemulsion, J. Mater. Chem., 7, 501, 10.1039/a605403j

Inoue, 1998, Glycothermal synthesis of rare earth iron garnets, J. Mater. Res., 13, 856, 10.1557/JMR.1998.0114

Bahadur, 1982, Preparation of glass-ceramics containing YIG, J. Mater. Sci. Lett., 1, 106, 10.1007/BF00724721

Vaqueiro, 1998, Synthesis of yttrium aluminium garnet by the citrate gel process, J. Mater. Chem., 8, 161, 10.1039/a705635d

Vaqueiro, 1997, Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-Gel method, Chem. Mater., 9, 2836, 10.1021/cm970165f

Vaqueiro, 1997, Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process, J. Magn. Magn. Mater., 169, 56, 10.1016/S0304-8853(96)00728-7

Suresh, 1994, Combustion synthesis and properties of Ln3Fe5O12 and yttrium aluminium garnets, J. Alloys Compd., 209, 203, 10.1016/0925-8388(94)91098-7

Gubin, 2005, Magnetic nanoparticles: Preparation methods, structure and properties, Usp. Khim., 74, 539, 10.1070/RC2005v074n06ABEH000897

Stanicki, 2015, Synthesis and processing of magnetic nanoparticles, Curr. Opin. Chem. Eng., 8, 7, 10.1016/j.coche.2015.01.003

Faraji, 2010, Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications, J. Iran. Chem. Soc., 7, 1, 10.1007/BF03245856

Osaka, 2006, Synthesis of magnetic nanoparticles and their application to bioassays, Anal. Bioanal. Chem., 384, 593, 10.1007/s00216-005-0255-7

Hao, 2010, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater., 22, 2729, 10.1002/adma.201000260

Rotello, V. (2004). Synthesis and applications of magnetic nanoparticles. Nanoparticles: Building Blocks for Nanotechnology, Springer.

Akbarzadeh, 2012, Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett., 7, 144, 10.1186/1556-276X-7-144

Willard, 2004, Chemically prepared magnetic nanoparticles, Int. Mater. Rev., 49, 125, 10.1179/095066004225021882

Park, 2004, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3, 891, 10.1038/nmat1251

Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012

Laurent, 2008, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem.Rev., 108, 2064, 10.1021/cr068445e

Wu, W., Wu, Z.H., Yu, T., Jiang, C.Z., and Kim, W.S. (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 16.

Ghosh, 2006, MnO and NiO nanoparticles: Synthesis and magnetic properties, J. Mater. Chem., 16, 106, 10.1039/B511920K

Yang, 2008, Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging, J. Biomed. Nanotechnol., 4, 439, 10.1166/jbn.2008.007

Lee, 2012, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents, Chem. Soc. Rev., 41, 2575, 10.1039/C1CS15248C

Arbab, 2003, Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging, Radiology, 229, 838, 10.1148/radiol.2293021215

Pankhurst, 2016, Applications of magnetic nanoparticles in biomedicine: The story so far, J. Phys. D Appl. Phys., 49, 501002, 10.1088/0022-3727/49/50/501002

Gupta, 2004, Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies, IEEE Trans. Nanobiosci., 3, 66, 10.1109/TNB.2003.820277

Dormann, J.L., and Fiorani, D. (1992). Magnetic fluids (ferrofluids) A2. Magnetic Properties of Fine Particles, Elsevier.

Gupta, 2004, Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors, Biomaterials, 25, 3029, 10.1016/j.biomaterials.2003.09.095

Reimers, G.W., and Khalafalla, S.E. (1972). Preparing Magnetic Fluids by a Peptizing Method.

Hanson, 1994, Magnetic characterization of iron oxides for magnetic resonance imaging, Magn. Reson. Med., 31, 268, 10.1002/mrm.1910310305

Jain, 2008, Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging, Biomaterials, 29, 4012, 10.1016/j.biomaterials.2008.07.004

Stolnik, 1995, Long circulating microparticulate drug carriers, Adv. Drug Deliv. Rev., 16, 195, 10.1016/0169-409X(95)00025-3

Gurav, 1993, Aerosol processing of materials, Aerosol Sci. Technol., 19, 411, 10.1080/02786829308959650

Lee, 2001, Microelectromagnets for the control of magnetic nanoparticles, Appl. Phys. Lett., 79, 3308, 10.1063/1.1419049

Rishton, 1997, Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography, Microelectron. Eng., 35, 249, 10.1016/S0167-9317(96)00107-4

Kennedy, 2011, Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing, Nanotechnology, 22, 115602, 10.1088/0957-4484/22/11/115602

Leveneur, J., Kennedy, J., Williams, G.V.M., Metson, J., and Markwitz, A. (2011). Large room temperature magnetoresistance in ion beam synthesized surface fe nanoclusters on SiO2. Appl. Phys. Lett., 98.

Pedro, 2003, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys., 36, R182, 10.1088/0022-3727/36/13/202

McCarthy, 2008, Multifunctional magnetic nanoparticles for targeted imaging and therapy, Adv. Drug Deliv. Rev., 60, 1241, 10.1016/j.addr.2008.03.014

Mornet, 2006, Magnetic nanoparticle design for medical applications, Prog. Solid State Chem., 34, 237, 10.1016/j.progsolidstchem.2005.11.010

Wu, 2011, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation, Mater. Lett., 65, 1882, 10.1016/j.matlet.2011.03.065

Hong, 2006, Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids, J. Magn. Magn. Mater., 303, 60, 10.1016/j.jmmm.2005.10.230

Patel, 2008, Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as mri contrast agent, Colloids Surf. A Physicochem. Eng. Asp., 313–314, 91, 10.1016/j.colsurfa.2007.04.078

Peng, 2008, Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method, Trans. Nonferrous Met. Soc. China, 18, 393, 10.1016/S1003-6326(08)60069-2

Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467

Hyeon, 2002, Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals, J. Phys. Chem. B, 106, 6831, 10.1021/jp026042m

Tang, 2008, Using thermal energy produced by irradiation of Mn–Zn ferrite magnetic nanoparticles (MZF-NPS) for heat-inducible gene expression, Biomaterials, 29, 2673, 10.1016/j.biomaterials.2008.01.038

Hanini, 2016, Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells, J. Magn. Magn. Mater., 416, 315, 10.1016/j.jmmm.2016.05.016

Mandal, 2005, Magnetite nanoparticles with tunable gold or silver shell, J. Colloid Interface Sci., 286, 187, 10.1016/j.jcis.2005.01.013

Huber, 2005, Synthesis, properties, and applications of iron nanoparticles, Small, 1, 482, 10.1002/smll.200500006

Peng, 2006, Synthesis and stabilization of monodisperse fe nanoparticles, J. Am. Chem. Soc., 128, 10676, 10.1021/ja063969h

Qiang, 2006, Iron/iron oxide core-shell nanoclusters for biomedical applications, J. Nanopart. Res., 8, 489, 10.1007/s11051-005-9011-3

Sun, 2006, Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles, Adv. Mater., 18, 393, 10.1002/adma.200501464

Sun, 2000, Monodisperse fept nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287, 1989, 10.1126/science.287.5460.1989

Hong, 2005, Surface pegylation and ligand exchange chemistry of FePt nanoparticles for biological applications, Chem. Mater., 17, 4617, 10.1021/cm0507819

Gao, 2007, Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: A simple preparation for multifunctional nanostructures, J. Am. Chem. Soc., 129, 11928, 10.1021/ja0731017

Gao, 2007, FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill HeLa cells, J. Am. Chem. Soc., 129, 1428, 10.1021/ja067785e

Multigner, 2007, Synthesis and characterization of FePt/Au core-shell nanoparticles, J. Magn. Magn. Mater., 316, 753, 10.1016/j.jmmm.2007.03.084

Reiss, 2005, Magnetic nanoparticles: Applications beyond data storage, Nat. Mater., 4, 725, 10.1038/nmat1494

Bai, 2005, High-magnetic-moment core-shell-type FeCo–Au/Ag nanoparticles, Appl. Phys. Lett., 87, 152502, 10.1063/1.2089171

Seo, 2006, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater., 5, 971, 10.1038/nmat1775

Xu, 1992, Aerosol synthesis of gadolinium iron-garnet particles, J. Mater. Res., 7, 712, 10.1557/JMR.1992.0712

Kainz, 2014, Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications, Faraday Discuss., 175, 27, 10.1039/C4FD00108G

Stevenson, 2001, Magnetic cobalt dispersions in poly(dimethylsiloxane) fluids, J. Magn. Magn. Mater., 225, 47, 10.1016/S0304-8853(00)01227-0

Osorio-Cantillo, C., Santiago-Miranda, A.N., Perales-Perez, O., and Xin, Y. (2012). Size- and phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications. J. Appl. Phys., 111.

Connolly, 2002, Silica coating of cobal nanoparticles increases their magnetic and chemical stability for biomedical applications, Eur. Cells Mater., 3, 106

Dailey, 1999, Synthesis of silicone magnetic fluid for use in eye surgery, J. Magn. Magn. Mater., 194, 140, 10.1016/S0304-8853(98)00562-9

Rutnakornpituk, 2002, Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications, Eur. Cells Mater., 3, 102

Vaucher, 2002, Molecule-based magnetic nanoparticles: Synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions, Nano Lett., 2, 225, 10.1021/nl0156538

Sun, 1999, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited), J. Appl. Phys., 85, 4325, 10.1063/1.370357

Joubert, 1997, Magnetic micro composites as vectors for bioactive agents: The state of art, Multilingue, 93, 70

Sun, 2002, Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer, Mater. Res. Bull., 37, 991, 10.1016/S0025-5408(02)00702-X

Zhou, 2008, Ni/Ni3C core-shell nanochains and its magnetic properties: One-step synthesis at low temperature, Nano Lett., 8, 1147, 10.1021/nl073291j

Gorria, 2015, Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix, J. Mater. Chem. C, 3, 5674, 10.1039/C5TC01095K

Liu, 2003, Preparation of nanoscale nio powders by polymer-network gel process, Chin. J. Inorg. Chem., 19, 624

Liu, 1996, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc., 143, 124, 10.1149/1.1836396

Deki, 2003, NH2-terminated poly(ethylene oxide) containing nanosized NiO particles: Synthesis, characterization, and structural considerations, Chem. Mater., 15, 4916, 10.1021/cm021754a

Xiang, 2002, Experimental study on synthesis of NiO nano-particles, Scr. Mater., 47, 219, 10.1016/S1359-6462(02)00108-2

Rahal, 2017, Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles, J. Nanomater., 2017, 9, 10.1155/2017/7460323

Rahdar, 2015, NiO nanoparticles: Synthesis and characterization, J. Nanostruct., 5, 145

Safarikova, 1999, Magnetic solid-phase extraction, J. Magn. Magn. Mater., 194, 108, 10.1016/S0304-8853(98)00566-6

Towler, 1996, Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite, Anal. Chim. Acta, 328, 53, 10.1016/0003-2670(96)00080-3

Wondracek, 2016, Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole and its application as Cu(II) adsorbent from aqueous samples, Appl. Surf. Sci., 367, 533, 10.1016/j.apsusc.2016.01.172

Li, 2013, Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment, Chem. Eng. J., 229, 296, 10.1016/j.cej.2013.06.016

Zong, 2014, Rapid and economical synthesis of magnetic multiwalled carbon nanotube/iron oxide composite and its application in preconcentration of U(VI), J. Mol. Liq., 195, 92, 10.1016/j.molliq.2014.02.002

Gatabi, 2016, Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: Equilibrium, kinetic, and thermodynamic study, J. Nanopart. Res., 18, 189, 10.1007/s11051-016-3487-x

Chen, 2014, One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal, J. Colloid Interface Sci., 434, 9, 10.1016/j.jcis.2014.07.046

Gouda, 2016, Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples, Food Chem., 202, 409, 10.1016/j.foodchem.2016.02.006

Bagheri, 2016, Determination of trace amounts of Cd(II), Cu(II), and Ni(II) in food samples using a novel functionalized magnetic nanosorbent, Food Anal. Methods, 9, 876, 10.1007/s12161-015-0264-x

Soylak, 2014, Multiwalled carbon nanotube impregnated with tartrazine: Solid phase extractant for Cd(II) and Pb(II), J. Ind. Eng. Chem., 20, 581, 10.1016/j.jiec.2013.05.017

Anbia, 2015, Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48, Chem. Eng. Res. Des., 93, 779, 10.1016/j.cherd.2014.07.018

Yen, 2017, Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles, J. Hazard. Mater., 322, 215, 10.1016/j.jhazmat.2016.02.029

Chou, 2011, Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions, J. Nanopart. Res., 13, 2099, 10.1007/s11051-010-9967-5

Khan, 2015, Sol-gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: An ecofriendly and economical approach, Chem. Eng. J., 279, 416, 10.1016/j.cej.2015.05.042

Ramandi, 2015, Surfacted ferrofluid based dispersive solid phase extraction; a novel approach to preconcentration of cationic dye in shrimp and water samples, Food Chem., 185, 398, 10.1016/j.foodchem.2015.03.042

Shahri, 2015, Synthesis of modified maghemite nanoparticles and its application for removal of acridine orange from aqueous solutions by using Box-Behnken design, J. Magn. Magn. Mater., 396, 318, 10.1016/j.jmmm.2015.08.054

Zhao, 2015, Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal, J. Colloid Interface Sci., 450, 189, 10.1016/j.jcis.2015.03.015

Tolmacheva, 2016, Facile synthesis of magnetic hypercrosslinked polystyrene and its application in the magnetic solid-phase extraction of sulfonamides from water and milk samples before their HPLC determination, Talanta, 152, 203, 10.1016/j.talanta.2016.02.010

Sukchuay, 2015, Polypyrrole/silica/magnetite nanoparticles as a sorbent for the extraction of sulfonamides from water samples, J. Sep. Sci., 38, 3921, 10.1002/jssc.201500766

Tolmacheva, 2015, A polymeric magnetic adsorbent based on Fe3O4 nanoparticles and hypercrosslinked polystyrene for the preconcentration of tetracycline antibiotics, J. Anal. Chem., 70, 1313, 10.1134/S1061934815110155

Niu, 2016, Core-shell nanoparticles coated with molecularly imprinted polymers: A review, Microchim. Acta, 183, 2677, 10.1007/s00604-016-1930-4

Wei, 2016, Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples, J. Chromatogr. A, 1473, 19, 10.1016/j.chroma.2016.10.067

Gao, 2016, A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17 β-estradiol in milk, Food Chem., 194, 1040, 10.1016/j.foodchem.2015.08.112

Dai, 2014, Versatile method to obtain homogeneous imprinted polymer thin film at surface of superparamagnetic nanoparticles for tetracycline binding, Ind. Eng. Chem. Res., 53, 7157, 10.1021/ie404140y

Wang, 2016, Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples, Food Chem., 204, 135, 10.1016/j.foodchem.2016.02.016

Safdarian, 2016, Facile synthesis of magnetic molecularly imprinted polymer: Perphenazine template and its application in urine and plasma analysis, J. Chromatogr. A, 1455, 28, 10.1016/j.chroma.2016.05.083

Xie, 2015, Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the sudan dyes residue analysis, J. Chromatogr. A, 1405, 32, 10.1016/j.chroma.2015.05.068

Li, 2016, Synergetic recognition and separation of kelthane and pyridaben base on magnetic molecularly imprinted polymer nanospheres, J. Sep. Sci., 39, 4019, 10.1002/jssc.201600699

Green, M.R., and Sambrook, J. (2012). Molecular Cloning, Cold Spring Harbor Laboratory Press. [4th ed.].

Li, 2011, Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles, Langmuir, 27, 6099, 10.1021/la104653s

Vandeventer, 2012, Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions, J. Phys. Chem. B, 116, 5661, 10.1021/jp3017776

Sheng, 2016, Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation, Appl. Surf. Sci., 387, 1116, 10.1016/j.apsusc.2016.07.061

Bai, 2016, Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR, Colloid Surf. B Biointerfaces, 145, 257, 10.1016/j.colsurfb.2016.05.003

Lee, 2016, Magnetic nanowires for rapid and ultrasensitive isolation of DNA from cervical specimens for the detection of multiple human papillomaviruses genotypes, Biosens. Bioelectron., 86, 864, 10.1016/j.bios.2016.07.066

Kudr, 2015, Use of nucleic acids anchor system to reveal apoferritin modification by cadmium telluride nanoparticles, J. Mater. Chem. B, 3, 2109, 10.1039/C4TB01336K

Dai, 2016, A near-infrared magnetic aptasensor for ochratoxin a based on near-infrared upconversion nanoparticles and magnetic nanoparticles, Talanta, 158, 246, 10.1016/j.talanta.2016.05.063

Adams, 2015, Comparison of three magnetic bead surface functionalities for RNA extraction and detection, ACS Appl. Mater. Interfaces, 7, 6062, 10.1021/am506374t

Tarigh, 2014, Simultaneous in situ derivatization and ultrasound-assisted dispersive magnetic solid phase extraction for thiamine determination by spectrofluorimetry, Talanta, 123, 71, 10.1016/j.talanta.2014.01.045

Chen, 2009, A facile synthesis approach to C-8-functionalized magnetic carbonaceous polysaccharide microspheres for the highly efficient and rapid enrichment of peptides and direct maldi-tof-ms analysis, Adv. Mater., 21, 2200, 10.1002/adma.200802260

Zhang, 2016, Nanoparticle-assisted removal of protein in human serum for metabolomics studies, Anal. Chem., 88, 1003, 10.1021/acs.analchem.5b03889

Cheng, 2014, Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides, ACS Appl. Mater. Interfaces, 6, 12719, 10.1021/am502712a

Horak, 2014, Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: Application to the immunocapture of β-amyloid peptides, Macromol. Biosci., 14, 1590, 10.1002/mabi.201400249

Yang, 2016, Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation, J. Mater. Sci., 51, 937, 10.1007/s10853-015-9423-0

Qi, 2016, NiCoMnO4: A bifunctional affinity probe for his-tagged protein purification and phosphorylation sites recognition, ACS Appl. Mater. Interfaces, 8, 18675, 10.1021/acsami.6b04280

Rashid, 2016, Fast and highly efficient purification of 6×histidine-tagged recombinant proteins by Ni-decorated MnFe2O4@SiO2@NH2@2AB as novel and efficient affinity adsorbent magnetic nanoparticles, RSC Adv., 6, 36840, 10.1039/C5RA25949E

Meisenbichler, 2016, Development of magnetic ytterbium oxide core-shell particles for selectively trapping phosphopeptides, Anal. Methods, 8, 3061, 10.1039/C5AY03423J

Ma, 2016, Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins, Anal. Chim. Acta, 929, 23, 10.1016/j.aca.2016.04.058

Liu, 2016, Boronic acid-functionalized particles with flexible three-dimensional polymer branch for highly specific recognition of glycoproteins, ACS Appl. Mater. Interfaces, 8, 9552, 10.1021/acsami.6b01829

Caragata, 2016, Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays, Anal. Biochem., 497, 76, 10.1016/j.ab.2015.11.024

Li, 2015, Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides, J. Chromatogr. A, 1425, 213, 10.1016/j.chroma.2015.11.044

Zhao, X.C., Wang, L., Sun, J., Jiang, B.W., Zhang, E.L., and Ye, J. (2016). Isolating sperm from cell mixtures using magnetic beads coupled with an anti-pH-20 antibody for forensic DNA analysis. PLoS ONE, 11.

Zhu, 2016, Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis, Chem. Sci., 7, 2987, 10.1039/C5SC04919A

Nanduri, 2007, Phage as a molecular recognition element in biosensors immobilized by physical adsorption, Biosens. Bioelectron., 22, 986, 10.1016/j.bios.2006.03.025

Chen, 2015, Bacteriophage-based nanoprobes for rapid bacteria separation, Nanoscale, 7, 16230, 10.1039/C5NR03779D

Liu, 2011, Functionalized arrays of raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood, Nat. Commun., 2, 538, 10.1038/ncomms1546

Hasan, 2016, Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles, Anal. Bioanal. Chem., 408, 6269, 10.1007/s00216-016-9730-6

Carreira, 2016, Cationized magnetoferritin enables rapid labeling and concentration of gram-positive and gram-negative bacteria in magnetic cell separation columns, Appl. Environ. Microbiol., 82, 3599, 10.1128/AEM.00720-16

Du, 2014, Enzymatic transformation of phosphate decorated magnetic nanoparticles for selectively sorting and inhibiting cancer cells, Bioconjugate Chem., 25, 2129, 10.1021/bc500516g

Millan, 1995, Biology of human alkaline-phosphatases with special reference ts cancer, Crit. Rev. Clin. Lab. Sci., 32, 1, 10.3109/10408369509084680

Kashevsky, 2015, Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells, Soft Matter, 11, 6547, 10.1039/C5SM01311A

Sadeghizadeh, 2016, Cobalt separation by alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation, Bioprocess Biosyst. Eng., 39, 1899, 10.1007/s00449-016-1664-z

Lin, 2017, Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles, Colloid Surf. B Biointerfaces, 150, 261, 10.1016/j.colsurfb.2016.10.026

2014, Sensors and biosensors based on magnetic nanoparticles, TrAC Trends Anal. Chem., 62, 28, 10.1016/j.trac.2014.06.016

Hsing, 2007, Micro- and nano-magnetic particles for applications in biosensing, Electroanalysis, 19, 755, 10.1002/elan.200603785

Schrittwieser, S., Pelaz, B., Parak, W.J., Lentijo-Mozo, S., Soulantica, K., Dieckhoff, J., Ludwig, F., Guenther, A., Tschope, A., and Schotter, J. (2016). Homogeneous biosensing based on magnetic particle labels. Sensors, 16.

Cancar, 2016, A novel acetylcholinesterase biosensor: Core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides, ACS Appl. Mater. Interfaces, 8, 8058, 10.1021/acsami.5b12383

Darvesh, 2008, Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase, J. Med. Chem., 51, 4200, 10.1021/jm8002075

Lang, 2016, A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide, Talanta, 156, 34, 10.1016/j.talanta.2016.05.002

Sarkar, 2016, Electrochemical immunosensor based on PEG capped iron oxide nanoparticles, J. Electroanal. Chem., 783, 208, 10.1016/j.jelechem.2016.11.019

Leonardo, 2016, Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports, Microchim. Acta, 183, 1881, 10.1007/s00604-016-1821-8

Carinelli, 2015, Electrochemical magneto-actuated biosensor for CD4 count in aids diagnosis and monitoring, Biosens. Bioelectron., 74, 974, 10.1016/j.bios.2015.07.053

Liu, 2016, Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched salmonella enteritidis, Sens. Actuators B Chem., 230, 191, 10.1016/j.snb.2016.02.043

Otieno, 2016, Cancer diagnostics via ultrasensitive multiplexed detection of parathyroid hormone-related peptides with a microfluidic immunoarray, Anal. Chem., 88, 9269, 10.1021/acs.analchem.6b02637

Iranifam, 2013, Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles, TrAC Trends Anal. Chem., 51, 51, 10.1016/j.trac.2013.05.014

He, 2015, Detection of human leptin in serum using chemiluminescence immunosensor: Signal amplification by hemin/G-quadruplex DNAzymes and protein carriers by Fe3O4/polydopamine/Au nanocomposites, Sens. Actuators B Chem., 221, 792, 10.1016/j.snb.2015.07.022

Fischer, 2005, Brownian relaxation of magnetic colloids, J. Magn. Magn. Mater., 289, 74, 10.1016/j.jmmm.2004.11.021

Fock, 2017, Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein, Biosens. Bioelectron., 88, 94, 10.1016/j.bios.2016.07.088

Gao, 2007, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol., 2, 577, 10.1038/nnano.2007.260

Wei, 2008, Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection, Anal. Chem., 80, 2250, 10.1021/ac702203f

Martinkova, 2016, Colorimetric glucose assay based on magnetic particles having pseudo-peroxidase activity and immobilized glucose oxidase, Mol. Biotechnol., 58, 373, 10.1007/s12033-016-9936-z

Khun, 2012, Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode, Sens. Actuators B Chem., 173, 698, 10.1016/j.snb.2012.07.074

Issa, 2013, Magnetic nanoparticles: Surface effects and properties related to biomedicine applications, Int. J. Mol. Sci., 14, 21266, 10.3390/ijms141121266

Wust, 2002, Hyperthermia in combined treatment of cancer, Lancet Oncol., 3, 487, 10.1016/S1470-2045(02)00818-5

Milleron, 2007, “Heated” debates in apoptosis, Cell. Mol. Life Sci., 64, 2329, 10.1007/s00018-007-7135-6

Huff, 2007, Hyperthermic effects of gold nanorods on tumor cells, Nanomedicine, 2, 125, 10.2217/17435889.2.1.125

Larumbe, 2012, Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles, J. Phys. Condes. Matter, 24, 266007, 10.1088/0953-8984/24/26/266007

Simeonidis, 2016, In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice, Sci. Rep., 6, 38382, 10.1038/srep38382

Sanz, 2017, Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating, Biomaterials, 114, 62, 10.1016/j.biomaterials.2016.11.008

Das, 2016, Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers, ACS Appl. Mater. Interfaces, 8, 25162, 10.1021/acsami.6b09942

Lai, 2013, Multifunctional magnetic plasmonic nanoparticles for applications of magnetic/photo-thermal hyperthermia and surface enhanced raman spectroscopy, J. Magn. Magn. Mater., 331, 204, 10.1016/j.jmmm.2012.11.051

Balasubramanian, 2015, An “all in one” approach for simultaneous chemotherapeutic, photothermal and magnetic hyperthermia mediated by hybrid magnetic nanoparticles, RSC Adv., 5, 25066, 10.1039/C5RA00168D

Verstappen, 2003, Neurotoxic complications of chemotherapy in patients with cancer: Clinical signs and optimal management, Drugs, 63, 1549, 10.2165/00003495-200363150-00003

Pelaz, 2014, Protein corona formation around nanoparticles—From the past to the future, Mater. Horiz., 1, 301, 10.1039/C3MH00106G

Nissinen, 2016, Tailored dual pegylation of inorganic porous nanocarriers for extremely long blood circulation in vivo, ACS Appl. Mater. Interfaces, 8, 32723, 10.1021/acsami.6b12481

Karimi, 2013, Nano-magnetic particles used in biomedicine: Core and coating materials, Mater. Sci. Eng. C Mater. Biol. Appl., 33, 2465, 10.1016/j.msec.2013.01.045

McBain, 2008, Magnetic nanoparticles as gene delivery agents: Enhanced transfection in the presence of oscillating magnet arrays, Nanotechnology, 19, 405102, 10.1088/0957-4484/19/40/405102

Patil, 2014, Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility, J. Magn. Magn. Mater., 355, 22, 10.1016/j.jmmm.2013.11.033

Sattarahmady, 2016, Albumin coated arginine-capped magnetite nanoparticles as a paclitaxel vehicle: Physicochemical characterizations and in vitro evaluation, J. Drug Deliv. Sci. Technol., 36, 68, 10.1016/j.jddst.2016.07.004

Huang, 2017, Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and mri in cancer theranostics, Mater. Sci. Eng. C Mater. Biol. Appl., 70, 763, 10.1016/j.msec.2016.09.052

Li, 2016, Functional magnetic porous silica for T1-T2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs, Nanotechnology, 27, 485702, 10.1088/0957-4484/27/48/485702

Yin, 2014, Combined magnetic nanoparticle-based microrna and hyperthermia therapy to enhance apoptosis in brain cancer cells, Small, 10, 4106, 10.1002/smll.201400963

Miyagawa, 2014, Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low curie temperature, Int. J. Clin. Oncol., 19, 722, 10.1007/s10147-013-0606-x

Chen, 2014, Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier, Biomaterials, 35, 10058, 10.1016/j.biomaterials.2014.09.003

Arami, 2015, In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles, Chem. Soc. Rev., 44, 8576, 10.1039/C5CS00541H

Iatridi, 2016, Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications, ACS Appl. Mater. Interfaces, 8, 35059, 10.1021/acsami.6b13161

Yang, 2016, Doxorubicin-conjugated heparin-coated superparamagnetic iron oxide nanoparticles for combined anticancer drug delivery and magnetic resonance imaging, J. Biomed. Nanotechnol., 12, 1963, 10.1166/jbn.2016.2298