Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự thiếu hụt magnesi và sự tương tác của nó với hệ cơ xương, tập luyện và mô liên kết: tổng hợp bằng chứng
Sport Sciences for Health - 2024
Tóm tắt
Tập thể dục thể chất thường xuyên là một phần thiết yếu của lối sống lành mạnh, duy trì và củng cố sức khỏe cộng đồng. Gần đây, số lượng chấn thương cơ xương tái phát xảy ra trong quá trình tập luyện đang gia tăng. Một yếu tố nguy cơ nghiêm trọng đối với những tổn thương như vậy là bệnh lý mô liên kết ban đầu. Các kiểu hình loạn sản đặc hiệu bệnh lý, cho thấy độ nhạy cảm đặc biệt với chấn thương, đã được thiết lập. Vai trò quyết định trong việc tăng cường mức độ nghiêm trọng của các rối loạn mô liên kết một phần được cho là do sự thiếu hụt magnesi, một trong những tình trạng thiếu hụt phổ biến nhất ở con người. Nghiên cứu này nhằm trình bày vai trò của magnesi trong cân bằng nội môi mô liên kết, phục vụ cho việc biện minh về khả năng bổ sung magnesi cho những người có nguy cơ chấn thương cơ xương. Một bài tổng quan phân tích về dữ liệu gần đây được công bố từ tháng 1 năm 2004 đến tháng 12 năm 2023 trên các tài nguyên điện tử như Global Health, ScienceDirect, Elsevier, Medline, Embase, PubMed-NCBI, RSCI Scopus, Cochrane Library, e-Library, Google Academy, và CyberLeninka đã được tiến hành. Phân tích dữ liệu được thực hiện từ tháng 1 năm 2023 đến tháng 12 năm 2023. Việc phân tích các dữ liệu thu được cho phép xác định các cơ chế bệnh sinh chính của tác động do thiếu hụt magnesi lên mô liên kết, bao gồm sự mất ổn định RNA tế bào, sự bất hoạt của hyaluronan synthetases, điều tiết hoạt động của hyaluronidase, kích thích các metalloproteinase của ma trận, sự bất hoạt của elastase, sự thực hiện phản ứng tự miễn, kích hoạt lysyl oxidase và transglutaminase. Các quá trình này dẫn đến sự gia tăng thoái hóa collagen, elastin và chuỗi polysaccharide hyaluronan; giảm việc liên kết chéo cấu trúc sợi; và tăng cường các quá trình viêm. Điều này dẫn đến sự hình thành mô liên kết bị khuyết tật và làm tăng độ nhạy cảm với áp lực vật lý và nguy cơ chấn thương. Magnesi hoạt động tham gia vào hầu hết tất cả các phản ứng sinh hóa của quá trình chuyển hóa mô liên kết, và việc không thể tổng hợp nó trong cơ thể yêu cầu phải có lượng đủ yếu tố này được hấp thụ qua thực phẩm và nước. Trong trường hợp thiếu hụt magnesi từ vừa đến nặng, việc kê đơn bổ sung magnesi về mặt bệnh lý là hợp lý, và cần xem xét các bệnh kèm theo, mức độ thiếu hụt và độ tuổi. Việc điều trị thường xuyên bằng các chế phẩm magnesi giúp cải thiện các đặc tính cơ học của mô liên kết, ngăn ngừa sự tiến triển của các rối loạn loạn sản, giảm nguy cơ chấn thương và duy trì sức khỏe trong quá trình tập luyện.
Từ khóa
#magnesium deficiency #connective tissue #musculoskeletal injuries #physical exercise #biochemical reactions #homeostasisTài liệu tham khảo
Turk MA, Liu Y, Pope JE (2023) Non-pharmacological interventions in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Autoimmun Rev 22:103323. https://doi.org/10.1016/j.autrev.2023.103323
Rowiński J (2004) From immunohistochemistry to pathophysiology of rheumatoid arthritis: cross reactivity of self anti-immunoglobulin antibodies with collagen(s) may contribute to mechanisms of connective tissue damage (a hypothesis). Rocz Akad Med Bialymst 49(Suppl 1):182–184
Koivula M-K, Aman S, Karjalainen A et al (2005) Are there autoantibodies reacting against citrullinated peptides derived from type I and type II collagens in patients with rheumatoid arthritis? Ann Rheum Dis 64:1443–1450. https://doi.org/10.1136/ard.2004.031211
Karsdal MA, Kraus VB, Shevell D et al (2021) Profiling and targeting connective tissue remodeling in autoimmunity - A novel paradigm for diagnosing and treating chronic diseases. Autoimmun Rev 20:102706. https://doi.org/10.1016/j.autrev.2020.102706
King AC, Whitt-Glover MC, Marquez DX et al (2019) Physical activity promotion: highlights from the 2018 physical activity guidelines advisory committee systematic review. Med Sci Sports Exerc 51:1340–1353. https://doi.org/10.1249/MSS.0000000000001945
Reis RS, Salvo D, Ogilvie D et al (2016) Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet (London, England) 388:1337–1348. https://doi.org/10.1016/S0140-6736(16)30728-0
Wojtys EM (2019) Preventing sports injuries. Sports Health 11:16–17. https://doi.org/10.1177/1941738118814247
Patel DR, Baker RJ (2006) Musculoskeletal injuries in sports. Prim Care 33:545–579. https://doi.org/10.1016/j.pop.2006.02.001
Rondanelli M, Faliva MA, Tartara A et al (2021) An update on magnesium and bone health. Biometals 34:715–736. https://doi.org/10.1007/s10534-021-00305-0
Nikolenko VN, Oganesyan MV, Vovkogon AD et al (2020) Morphological signs of connective tissue dysplasia as predictors of frequent post-exercise musculoskeletal disorders. BMC Musculoskelet Disord 21:660. https://doi.org/10.1186/s12891-020-03698-0
Sankova MV, Nikolenko VN, Oganesyan MV et al (2021) Age pathognomonic indicators of injury predisposition as a basis for public health preservation during physical activity. Int J Environ Res Public Health 18:1989. https://doi.org/10.3390/ijerph18041989
Costello R, Wallace TC, Rosanoff A (2016) Magnesium. Adv Nutr 7:199–201. https://doi.org/10.3945/an.115.008524
Belluci MM, de Molon RS, Rossa C Jr et al (2020) Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J Nutr Biochem 77:108301. https://doi.org/10.1016/j.jnutbio.2019.108301
Janssen R (2017) Magnesium to counteract elastin degradation and vascular calcification in chronic obstructive pulmonary disease. Med Hypotheses 107:74–77. https://doi.org/10.1016/j.mehy.2017.08.014
Wilke J, Behringer M (2021) Is “Delayed Onset Muscle Soreness” a false friend? The potential implication of the fascial connective tissue in post-exercise discomfort. Int J Mol Sci 22:9482. https://doi.org/10.3390/ijms22179482
Halper J (2018) Basic components of vascular connective tissue and extracellular matrix. Adv Pharmacol 81:95–127. https://doi.org/10.1016/bs.apha.2017.08.012
Bychkova NYu (2022) Outpatient screening and prevention of complications after correction of age-related periorbital changes with dysplastic phenotype. Plast Surg Aesthet Med 4:84–94. https://doi.org/10.17116/plast.hirurgia202204184
Ramírez-Cheyne JA, Duque GA, Ayala-Zapata S et al (2019) Fragile X syndrome and connective tissue dysregulation. Clin Genet 95:262–267. https://doi.org/10.1111/cge.13469
Sarbacher CA, Halper JT (2019) Connective tissue and age-related diseases. Subcell Biochem 91:281–310. https://doi.org/10.1007/978-981-13-3681-2_11
Laronha H, Carpinteiro I, Portugal J et al (2020) Challenges in Matrix Metalloproteinases Inhibition. Biomolecules 10:717. https://doi.org/10.3390/biom10050717
Wang X, Khalil RA (2018) Matrix Metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol 81:241–330. https://doi.org/10.1016/bs.apha.2017.08.002
Jabłońska-Trypuć A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 31:177–183. https://doi.org/10.3109/14756366.2016.1161620
Timofeev EV, Zemtsovsky EV, Reeva SV (2019) Cardiac arrhythmias and predictors in patients of young age with marfanoid habitus. Pediatr (SPB) 10:37–46. https://doi.org/10.17816/PED10237-46
Arseni L, Lombardi A, Orioli D (2018) From structure to phenotype: impact of collagen alterations on human health. Int J Mol Sci 19:E1407. https://doi.org/10.3390/ijms19051407
Calò LA, Ravarotto V, Simioni F (2019) The importance of chronic magnesium deficiency in human disease and the Gitelman’s syndrome paradox. QJM 112:473–474. https://doi.org/10.1093/qjmed/hcy289
Shigematsu M, Tomonaga S, Shimokawa F et al (2018) Regulatory responses of hepatocytes, macrophages and vascular endothelial cells to magnesium deficiency. J Nutr Biochem 56:35–47. https://doi.org/10.1016/j.jnutbio.2018.01.008
Van Laecke S (2019) Hypomagnesemia and hypermagnesemia. Acta Clin Belg 74:41–47. https://doi.org/10.1080/17843286.2018.1516173
Topf JM, Murray PT (2003) Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord 4:195–206. https://doi.org/10.1023/a:1022950321817
Skilandat M, Rowinska-Zyrek M, Sigel RKO (2016) Secondary structure confirmation and localization of Mg2+ ions in the mammalian CPEB3 ribozyme. RNA 22:750–763. https://doi.org/10.1261/rna.053843.115
Abraham KJ, Chan JNY, Salvi JS et al (2016) Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res 44:8870–8884. https://doi.org/10.1093/nar/gkw752
Grover N (2015) On using magnesium and potassium ions in RNA experiments. Methods Mol Biol 1206:157–163. https://doi.org/10.1007/978-1-4939-1369-5_14
Kolev SK, Petkov PS, Rangelov MA et al (2018) Interaction of Na(+), K(+), Mg(2+) and Ca(2+) counter cations with RNA. Metallomics 10:659–678. https://doi.org/10.1039/c8mt00043c
Samara NL, Gao Y, Wu J, Yang W (2017) Detection of reaction intermediates in Mg(2+)-dependent DNA synthesis and RNA degradation by time-resolved X-ray crystallography. Methods Enzymol 592:283–327. https://doi.org/10.1016/bs.mie.2017.03.022
Erem S, Atfi A, Razzaque MS (2019) Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol 193:105400. https://doi.org/10.1016/j.jsbmb.2019.105400
Yee J (2018) Magnesium: an important orphan. Adv Chronic Kidney Dis 25:217–221. https://doi.org/10.1053/j.ackd.2018.04.001
Habriyev RU, Kamayev NO, Danilova TI, Kakhoyan EG (2016) Peculiarities of the action of hyaluronidase of different origin to the connective tissue. Biomed Khim 62:82–88. https://doi.org/10.18097/PBMC20166201082
Kalinin R, Suchkov I (2018) Application of magnesium drugs and their influence on the indicators of connective tissue dysplasia in patients with varicose veins. Novosti Khirurgii 26:51–59. https://doi.org/10.18484/2305-0047.2018.1.51
MacColl E, Khalil RA (2015) Matrix metalloproteinases as regulators of vein structure and function: implications in chronic venous disease. J Pharmacol Exp Ther 355:410–428. https://doi.org/10.1124/jpet.115.227330
Koldysheva EV, Klinnikova MG, Nikityuk DB et al (2018) Role of matrix metalloproteinase-2 in the development of cyclophosphamide-induced cardiomyopathy. Bull Exp Biol Med 164:483–487. https://doi.org/10.1007/s10517-018-4017-x
Kalinin RE, Suchkov IA, Pshennikov AS et al (2016) Concentration of matrix metalloproteinases and magnesium ions in patients with varicose veins of lower limbs. Angiol Sosud Khir 22:24–28
Torshin IY, Gromova OA (2009) Magnesium and pyridoxine: fundamental studies and clinical practice. Nova Science Publishers, New York
Grant TM, Yapp C, Chen Q et al (2015) The mechanical, structural, and compositional changes of tendon exposed to elastase. Ann Biomed Eng 43:2477–2486. https://doi.org/10.1007/s10439-015-1308-5
Hénaut L, Massy ZA (2018) Magnesium as a calcification inhibitor. Adv Chronic Kidney Dis 25:281–290. https://doi.org/10.1053/j.ackd.2017.12.001
Illing PT, Pymm P, Croft NP et al (2018) HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome. Nat Commun 9:4693. https://doi.org/10.1038/s41467-018-07109-w
Alpízar A, Marino F, Ramos-Fernández A et al (2017) A Molecular basis for the presentation of phosphorylated peptides by HLA-B antigens. Mol Cell Proteomics 16:181–193. https://doi.org/10.1074/mcp.M116.063800
Karamanli H, Kizilirmak D, Akgedik R, Bilgi M (2017) Serum levels of magnesium and their relationship with CRP in patients with OSA. Sleep Breath 21:549–556. https://doi.org/10.1007/s11325-016-1402-4
Shahi A, Aslani S, Ataollahi M, Mahmoudi M (2019) The role of magnesium in different inflammatory diseases. Inflammopharmacol 27:649–661. https://doi.org/10.1007/s10787-019-00603-7
Hu T, Xu H, Wang C et al (2018) Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci Rep 8:3406. https://doi.org/10.1038/s41598-018-21783-2
Mazur A, Maier JAM, Rock E et al (2007) Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 458:48–56. https://doi.org/10.1016/j.abb.2006.03.031
Nechifor M (2018) Magnesium in addiction - a general view. Magnes Res 31:90–98. https://doi.org/10.1684/mrh.2018.0443
Čabarkapa V, Đerić M, Todorović M et al (2019) Hypomagnesemia in adults of northern Serbia: prevalence, nutritional risk factors, and associated comorbidities. Magnes Res 32:25–36. https://doi.org/10.1684/mrh.2019.0452
Ismail A, Ismail AAA, Ismail Y (2019) Reply: Chronic magnesium deficiency and human disease; time for reappraisal? QJM 112:475. https://doi.org/10.1093/qjmed/hcy298
Kononova NY, Chernyshova TE, Pimenov LT et al (2018) Study of correlation between the number of phenotypes of undifferentiated connective tissue dysplasia and magnesium levels in oral fluid. Therapeutics 6:97–102. https://doi.org/10.18565/therapy.2018.6.97-102
Workinger JL, Doyle RP, Bortz J (2018) Challenges in the diagnosis of magnesium status. Nutrients 10:E1202. https://doi.org/10.3390/nu10091202
Gant CM, Soedamah-Muthu SS, Binnenmars SH et al (2018) Higher dietary magnesium intake and higher magnesium status are associated with lower prevalence of coronary heart disease in patients with type 2 diabetes. Nutrients 10:307. https://doi.org/10.3390/nu10030307
Mesquita RBR, Rangel AOSS (2004) A sequential injection system for the spectrophotometric determination of calcium, magnesium and alkalinity in water samples. Anal Sci Int J Japan Soc Anal Chem 20:1205–1210. https://doi.org/10.2116/analsci.20.1205
Schreiber A, Villaret AB, Maroldi R, Nicolai P (2012) Fibrous dysplasia of the sinonasal tract and adjacent skull base. Curr Opin Otolaryngol Head Neck Surg 20:45–52. https://doi.org/10.1097/MOO.0b013e32834e901c
Machado A, Maneiras R, Bordalo AA, Mesquita RBR (2018) Monitoring glucose, calcium, and magnesium levels in saliva as a non-invasive analysis by sequential injection multi-parametric determination. Talanta 186:192–199. https://doi.org/10.1016/j.talanta.2018.04.055
Wolf MT (2017) Inherited and acquired disorders of magnesium homeostasis. Curr Opin Pediatr 29:187–198. https://doi.org/10.1097/MOP.0000000000000450
Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7:8199–8226. https://doi.org/10.3390/nu7095388
Elasy AN, Nafea OE (2022) Critical hypermagnesemia in preeclamptic women under a magnesium sulfate regimen: incidence and associated risk factors. Biol Trace Elem Res 201:3670–3678. https://doi.org/10.1007/s12011-022-03479-x
Nielsen FH (2018) Dietary magnesium and chronic disease. Adv Chronic Kidney Dis 25:230–235. https://doi.org/10.1053/j.ackd.2017.11.005
Raman V, Cohen RA (2018) Hypomagnesemia in a patient with an eating disorder. Am J kidney Dis 71:A12–A14. https://doi.org/10.1053/j.ajkd.2017.09.022
Kim M, Basharat A, Santosh R et al (2019) Reuniting overnutrition and undernutrition, macronutrients, and micronutrients. Diabetes Metab Res Rev 35:e3072. https://doi.org/10.1002/dmrr.3072
López-Sobaler AM, Aparicio A, González-Rodríguez LG et al (2017) Adequacy of usual vitamin and mineral intake in Spanish children and adolescents: ENALIA Study. Nutrients 9:E131. https://doi.org/10.3390/nu9020131
Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68:333–340. https://doi.org/10.1111/j.1753-4887.2010.00293.x
Zofkova I, Davis M, Blahos J (2017) Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 66:391–402. https://doi.org/10.33549/physiolres.933454
Nielsen FH (2019) The problematic use of dietary reference intakes to assess magnesium status and clinical importance. Biol Trace Elem Res 188:52–59. https://doi.org/10.1007/s12011-018-1573-x
Razzaque MS (2018) Magnesium: are we consuming enough? Nutrients 10:E1863. https://doi.org/10.3390/nu10121863
Kostov K, Halacheva L (2018) Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 19:1724. https://doi.org/10.3390/ijms19061724
Pickering G, Mazur A, Trousselard M et al (2020) Magnesium status and stress: the vicious circle concept revisited. Nutrients 12:3672. https://doi.org/10.3390/nu12123672
Nayyar M, Yusuf J, Khan MU, Weber KT (2017) K(+) and Mg(2+) dyshomeostasis in acute hyperadrenergic stressor states. Am J Med Sci 353:422–424. https://doi.org/10.1016/j.amjms.2017.01.001
Serefko A, Szopa A, Poleszak E (2016) Magnesium and depression. Magnes Res 29:112–119. https://doi.org/10.1684/mrh.2016.0407
Wienecke E, Nolden C (2016) Long-term HRV analysis shows stress reduction by magnesium intake. MMW Fortschr Med 158:12–16. https://doi.org/10.1007/s15006-016-9054-7
Nakamura M, Miura A, Nagahata T et al (2019) Low zinc, copper, and manganese intake is associated with depression and anxiety symptoms in the Japanese working population: findings from the eating habit and well-being study. Nutrients 11:E847. https://doi.org/10.3390/nu11040847
Walsh SB, Zdebik AA, Unwin RJ (2015) Magnesium: the disregarded cation. Mayo Clin Proc 90:993–995. https://doi.org/10.1016/j.mayocp.2015.06.011
Barbagallo M, Veronese N, Dominguez LJ (2021) Magnesium in aging, health and diseases. Nutrients 13:463. https://doi.org/10.3390/nu13020463
Veronese N, Zanforlini BM, Manzato E, Sergi G (2015) Magnesium and healthy aging. Magnes Res 28:112–115. https://doi.org/10.1684/mrh.2015.0387
Reddy ST, Soman SS, Yee J (2018) Magnesium balance and measurement. Adv Chronic Kidney Dis 25:224–229. https://doi.org/10.1053/j.ackd.2018.03.002
Gröber U (2019) Magnesium and drugs. Int J Mol Sci 20:E2094. https://doi.org/10.3390/ijms20092094
Van Den Berg S, Scheer MLJ, Holman ND (2018) Severe hypomagnesaemia due to proton pump inhibitor use. Ned Tijdschr Geneeskd 162:D2702
William JH, Danziger J (2016) Magnesium deficiency and proton-pump inhibitor use: a clinical review. J Clin Pharmacol 56:660–668. https://doi.org/10.1002/jcph.672
Parazzini F, Di Martino M, Pellegrino P (2017) Magnesium in the gynecological practice: a literature review. Magnes Res 30:1–7. https://doi.org/10.1684/mrh.2017.0419
Ates M, Kizildag S, Yuksel O et al (2019) Dose-dependent absorption profile of different magnesium compounds. Biol Trace Elem Res 192:244–251. https://doi.org/10.1007/s12011-019-01663-0
Uysal N, Kizildag S, Yuce Z et al (2019) Timeline (Bioavailability) of magnesium compounds in hours: which magnesium compound works best? Biol Trace Elem Res 187:128–136. https://doi.org/10.1007/s12011-018-1351-9
Avgerinos KI, Chatzisotiriou A, Haidich A-B et al (2019) Intravenous magnesium sulfate in acute stroke. Stroke 50:931–938. https://doi.org/10.1161/STROKEAHA.118.021916
Soliman R, Nofal H (2019) The effect of perioperative magnesium sulfate on blood sugar in patients with diabetes mellitus undergoing cardiac surgery: a double-blinded randomized study. Ann Card Anaesth 22:151–157. https://doi.org/10.4103/aca.ACA_32_18
Pardo MR, Garicano Vilar E, San Mauro Martín I et al (2021) Bioavailability of magnesium food supplements: a systematic review. Nutrition 89:111294. https://doi.org/10.1016/j.nut.2021.111294
Orlova S, Dikke G, Pickering G et al (2021) Risk factors and comorbidities associated with magnesium deficiency in pregnant women and women with hormone-related conditions: analysis of a large real-world dataset. BMC Pregnancy Childbirth 21:76. https://doi.org/10.1186/s12884-021-03558-2
Pouteau E, Kabir-Ahmadi M, Noah L et al (2018) Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: a randomized, single-blind clinical trial. PLoS ONE 13:e0208454. https://doi.org/10.1371/journal.pone.0208454
Ahmed F, Mohammed A (2019) Magnesium: the forgotten electrolyte-a review on hypomagnesemia. Med Sci (Basel, Switzerland) 7:56. https://doi.org/10.3390/medsci7040056
Ferreira I, Ortigoza Á, Moore P (2019) Magnesium and malic acid supplement for fibromyalgia. Medwave 19:e7633. https://doi.org/10.5867/medwave.2019.04.7632
Younes M, Aggett P, Aguilar F et al (2018) Evaluation of di-magnesium malate, used as a novel food ingredient and as a source of magnesium in foods for the general population, food supplements, total diet replacement for weight control and food for special medical purposes. EFSA J Eur Food Saf Auth 16:e05292. https://doi.org/10.2903/j.efsa.2018.5292
Schutten JC, Joris PJ, Mensink RP et al (2019) Effects of magnesium citrate, magnesium oxide and magnesium sulfate supplementation on arterial stiffness in healthy overweight individuals: a study protocol for a randomized controlled trial. Trials 20:295. https://doi.org/10.1186/s13063-019-3414-4
Grases F, Rodriguez A, Costa-Bauza A (2015) Efficacy of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors in urine. J Urol 194:812–819. https://doi.org/10.1016/j.juro.2015.03.099
Gromova OA, Torshin IY, Nazarenko AG, Kalachev AG (2016) Deficiency of magnesium and pyridoxine as a risk factors for coronary heart disease. Kardiologiia 56:55–62. https://doi.org/10.18565/cardio.2016.10.55-62
Rosanoff A, Plesset MR (2013) Oral magnesium supplements decrease high blood pressure (SBP>155 mmHg) in hypertensive subjects on anti-hypertensive medications: a targeted meta-analysis. Magnes Res 26:93–99. https://doi.org/10.1684/mrh.2013.0343
Trivedi MK, Dixit N, Panda P et al (2017) In-depth investigation on physicochemical and thermal properties of magnesium (II) gluconate using spectroscopic and thermoanalytical techniques. J Pharm Anal 7:332–337. https://doi.org/10.1016/j.jpha.2017.03.006
Escobedo-Monge MF, Barrado E, Parodi-Román J et al (2022) Magnesium status and Ca/Mg ratios in a series of children and adolescents with chronic diseases. Nutrients 14:2941. https://doi.org/10.3390/nu14142941
Gromova OA, Torshin IY, Kalacheva AG et al (2016) Molecular mechanisms of pidolate magnesium action and its neurotropic affects. Zhurnal Nevrol i psikhiatrii Im SS Korsakova 116:96–103. https://doi.org/10.17116/jnevro201611612196-103
Sakaguchi Y (2022) The emerging role of magnesium in CKD. Clin Exp Nephrol 26:379–384. https://doi.org/10.1007/s10157-022-02182-4
Kuang X, Chiou J, Lo K, Wen C (2021) Magnesium in joint health and osteoarthritis. Nutr Res 90:24–35. https://doi.org/10.1016/j.nutres.2021.03.002
Gromova OA, Torshin IY, Kobalava ZD, Nazarenko AG (2019) Systematic analysis of the roles of trace elements in the prevention and treatment of chronic heart failure. Kardiologiia 59:26–34. https://doi.org/10.18087/cardio.2019.6.n683
Moskvina IV, Nechaeva GI (2011) Adrenoreactivity in patients with arrhythmic syndrome associated with connective tissue dysplasia at the background of intake of the magnesium orotate. Kardiologiia 51:54–57
Voultsos P, Bazmpani MA, Papanastasiou CA et al (2022) Magnesium disorders and prognosis in heart failure: a systematic review. Cardiol Rev 30:281–285. https://doi.org/10.1097/CRD.0000000000000397
Zhao L, Hu M, Yang L, Xu H, Song W et al (2019) Quantitative association between serum/dietary magnesium and cardiovascular disease/coronary heart disease risk: a dose-response Meta-analysis of Prospective Cohort Studies. J Cardiovasc Pharmacol 74:516–527. https://doi.org/10.1097/FJC.0000000000000739
Dos Santos LR, Melo SRS, Severo JS et al (2021) Cardiovascular diseases in obesity: what is the role of magnesium? Biol Trace Elem Res 199:4020–4027. https://doi.org/10.1007/s12011-020-02528-7
Waldron M, Patterson SD, Jeffries O (2019) Oral taurine improves critical power and severe-intensity exercise tolerance. Amino Acids 51:1433–1441. https://doi.org/10.1007/s00726-019-02775-6
Kurtz JA, VanDusseldorp TA, Doyle JA, Otis JS (2021) Taurine in sports and exercise. J Int Soc Sports Nutr 18:39. https://doi.org/10.1186/s12970-021-00438-0
Waldron M, Patterson SD, Tallent J, Jeffries O (2018) The effects of oral taurine on resting blood pressure in humans: a meta-analysis. Curr Hypertens Rep 20:81. https://doi.org/10.1007/s11906-018-0881-z
Ra S-G, Choi Y, Akazawa N et al (2019) Effects of taurine supplementation on vascular endothelial function at rest and after resistance exercise. Adv Exp Med Biol 1155:407–414. https://doi.org/10.1007/978-981-13-8023-5_38
Santulli G, Kansakar U, Varzideh F et al (2023) Functional role of taurine in aging and cardiovascular health: an updated overview. Nutrients 15:4236. https://doi.org/10.3390/nu15194236
Bkaily G, Jazzar A, Normand A et al (2020) Taurine and cardiac disease: state of the art and perspectives. Can J Physiol Pharmacol 98:67–73. https://doi.org/10.1139/cjpp-2019-0313
Ribeiro RA, Bonfleur ML, Batista TM et al (2018) Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine. Amino Acids 50:1511–1524. https://doi.org/10.1007/s00726-018-2650-3
El Idrissi A, El Hilali F, Rotondo S, Sidime F (2017) Effects of taurine supplementation on neuronal excitability and glucose homeostasis. Adv Exp Med Biol 975(Pt 1):271–279. https://doi.org/10.1007/978-94-024-1079-2_24
Rafiee Z, García-Serrano AM, Duarte JMN (2022) Taurine supplementation as a neuroprotective strategy upon brain dysfunction in metabolic syndrome and diabetes. Nutrients 14:1292. https://doi.org/10.3390/nu14061292
Murakami S (2015) Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res 59:1353–1363. https://doi.org/10.1002/mnfr.201500067
Seitz RJ, Donnan GA (2010) Role of neuroimaging in promoting long-term recovery from ischemic stroke. J Magn Reson Imaging 32:756–772. https://doi.org/10.1002/jmri.22315
Liu G, Weinger JG, Lu Z-L et al (2016) Efficacy and safety of MMFS-01, a synapse density enhancer, for treating cognitive impairment in older adults: a randomized, double-blind, placebo-controlled trial. J Alzheimers Dis 49:971–990. https://doi.org/10.3233/JAD-150538
Wang D, Jacobs SA, Tsien JZ (2014) Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline. Expert Opin Ther Targets 18:1121–1130. https://doi.org/10.1517/14728222.2014.941286
Li W, Yu J, Liu Y et al (2014) Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol Brain 7:65. https://doi.org/10.1186/s13041-014-0065-y
Tica VI, Tica AA, Carlig V, Banica OS (2007) Magnesium ion inhibits spontaneous and induced contractions of isolated uterine muscle. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 23:368–372. https://doi.org/10.1080/09513590701325699
Baar K (2017) Minimizing injury and maximizing return to play: lessons from engineered ligaments. Sports Med 47:5–11. https://doi.org/10.1007/s40279-017-0719-x
Rahim S, Rahim F, Shirbandi K et al (2019) Sports injuries: diagnosis, prevention, stem cell therapy, and medical sport strategy. Adv Exp Med Biol 1084:129–144. https://doi.org/10.1007/5584_2018_298