Magnesium-based nanocomposites: Lightweight materials of the future

Materials Characterization - Tập 105 - Trang 30-46 - 2015
Manoj Gupta1, Eugene Wong2,3
1Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore#TAB#
2Newcastle University International Singapore, 172A Ang Mo Kio Avenue 8 #05-01, SIT Building @ Nanyang Polytechnic, Singapore 567739, Singapore
3School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Neite, 2006, Magnesium-based alloys

CES Edupack, 2014.

Moll, 2004, Particle-reinforced magnesium alloys, 197

Ye, 2004, Review of recent studies in magnesium matrix composites, J. Mater. Sci., 9, 6153, 10.1023/B:JMSC.0000043583.47148.31

Friedrich, 2006

Cole, 2003, Magnesium, Chem. Eng. News Archive, 81, 52, 10.1021/cen-v081n036.p052

Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003

Li, 2013, Novel magnesium alloys developed for biomedical application: a review, J. Mater. Sci. Technol., 29, 489, 10.1016/j.jmst.2013.02.005

Wong, 2005, Enhancing thermal stability, modulus and ductility of magnesium using molybdenum as reinforcement, Adv. Eng. Mater., 7, 250, 10.1002/adem.200400137

Hassan, 2004, Increasing elastic modulus, strength and CTE of AZ91 by reinforcing pure magnesium with elemental copper, Mater. Lett., 58, 2143, 10.1016/j.matlet.2004.01.011

Hassan, 2002, Development of Ductile Magnesium Composite Materials Using Titanium as Reinforcement, 345, 246

Hassan, 2002, Development of a novel magnesium/nickel composite with improved mechanical properties, J. Alloys Compd., 335, L10, 10.1016/S0925-8388(01)01841-2

Lloyd, 1994, Particle Reinforced Aluminium and Magnesium Matrix Composites, 39

Gupta, 2014, An insight into processing and characteristics of magnesium based composites, 419

Tjong, 2007, Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Adv. Eng. Mater., 9, 639, 10.1002/adem.200700106

Cole, 2003, Magnesium, Chem. Eng. News Archive, 81, 52, 10.1021/cen-v081n036.p052

Casati, 2014, Metal matrix composites reinforced by nano-particles—a review, Metals (Basel), 4, 65, 10.3390/met4010065

Wong, 2006, Effect of hybrid length scales (micro+nano) of SiC reinforcement on the properties of magnesium, Solid State Phenom., 111, 91, 10.4028/www.scientific.net/SSP.111.91

Hassan, 2006, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg, J. Alloys Compd., 419, 84, 10.1016/j.jallcom.2005.10.005

ScienceDirect

Lan, 2004, Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, Mater. Sci. Eng. A, 386, 284, 10.1016/j.msea.2004.07.024

Uozumi, 2008, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting, Mater. Sci. Eng. A, 495, 282, 10.1016/j.msea.2007.11.088

Gupta, 2007

Ma, 2013, Effect of fabrication and processing technology on the biodegradability of magnesium nanocomposites, J. Biomed. Mater. Res. B Appl. Biomater., 101, 870, 10.1002/jbm.b.32891

Nie, 2011, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd., 509, 8664, 10.1016/j.jallcom.2011.06.091

Gupta, 2011, Synthesis techniques for magnesium-based materials, 13

Wong, 2005, Using hybrid reinforcement methodology to enhance overall mechanical performance of pure magnesium, J. Mater. Sci., 40, 2875, 10.1007/s10853-005-2429-2

Wong, 2007

Wong, 2010, Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering, J. Microw. Power Electromagn. Energy., 44, 14, 10.1080/08327823.2010.11689773

German, 1996

Goh, 2007, Properties and deformation behaviour of Mg–Y2O3 nanocomposites, Acta Mater., 55, 5115, 10.1016/j.actamat.2007.05.032

Wong, 2007, Development of Mg/Cu nanocomposites using microwave assisted rapid sintering, Compos. Sci. Technol., 67, 1541, 10.1016/j.compscitech.2006.07.015

Meenashisundaram, 2015, Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications, Mater. Des., 65, 104, 10.1016/j.matdes.2014.08.041

Hassan, 2004, Development of high performance magnesium nanocomposites using solidification processing route, Mater. Sci. Technol., 20, 1383, 10.1179/026708304X3980

Wong, 2007, Improving overall mechanical performance of magnesium using nano-alumina reinforcement and energy efficient microwave assisted processing route, Adv. Eng. Mater., 9, 902, 10.1002/adem.200700169

Sankaranarayanan, 2014, Effect of nanoscale boron carbide particle addition on the microstructural evolution and mechanical response of pure magnesium, Mater. Des., 56, 428, 10.1016/j.matdes.2013.11.031

Sankaranarayanan, 2014, Mg/BN nanocomposites: nano-BN addition for enhanced room temperature tensile and compressive response, J. Compos. Mater., 10.1177/0021998314559278

Meenashisundaram, 2014, Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates, Mater. Charact., 94, 178, 10.1016/j.matchar.2014.05.021

Tun, 2013, Tensile and compressive responses of ceramic and metallic nanoparticle reinforced Mg composites, Materials (Basel), 6, 1826, 10.3390/ma6051826

Tun, 2007, Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method, Compos. Sci. Technol., 67, 2657, 10.1016/j.compscitech.2007.03.006

Seetharaman, 2013, Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method, Materials (Basel), 6, 1940, 10.3390/ma6051940

Sankaranarayanan, 2014, Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties, Mater. Sci. Technol., 10.1179/1743284714Y.0000000686

Meenashisundaram, 2014, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium, J. Alloys Compd., 593, 176, 10.1016/j.jallcom.2013.12.157

Tun, 2009, Development of magnesium/(yttria+nickel) hybrid nanocomposites using hybrid microwave sintering: Microstructure and tensile properties, J. Alloys Compd., 487, 76, 10.1016/j.jallcom.2009.07.117

Maqbool, 2013, Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites, Mater. Charact., 86, 39, 10.1016/j.matchar.2013.09.006

Goh, 2007, Characterization of high performance Mg/MgO nanocomposites, J. Compos. Mater., 41, 2325, 10.1177/0021998307075445

Wong, 2006, Simultaneously improving strength and ductility of magnesium using Nano-size SiC particulates and microwaves, Adv. Eng. Mater., 8, 735, 10.1002/adem.200500209

Habibi, 2013, Hybridizing boron carbide (B4C) particles with aluminum (Al) to enhance the mechanical response of magnesium based nano-composites, J. Alloys Compd., 550, 83, 10.1016/j.jallcom.2012.09.128

Goh, 2008, Ductility improvement and fatigue studies in Mg-CNT nanocomposites, Compos. Sci. Technol., 68, 1432, 10.1016/j.compscitech.2007.10.057

Zhong, 2007, Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles, Acta Mater., 55, 6338, 10.1016/j.actamat.2007.07.039

Tun, 2010, Investigating influence of hybrid (yttria+copper) nanoparticulate reinforcements on microstructural development and tensile response of magnesium, Mater. Sci. Technol., 26, 87, 10.1179/174328408X388095

Sankaranarayanan, 2014, Nano-ZnO particle addition to monolithic magnesium for enhanced tensile and compressive response, J. Alloys Compd., 615, 211, 10.1016/j.jallcom.2014.06.163

Okamoto, 2000

Garcés, 2005, Effect of the extrusion texture on the mechanical behaviour of Mg–SiC p composites, Scr. Mater., 52, 615, 10.1016/j.scriptamat.2004.11.024

Choi, 2011, Characterization of hot extruded Mg/SiC nanocomposites fabricated by casting, J. Mater. Sci., 46, 2991, 10.1007/s10853-010-5176-y

De Cicco, 2009, Strong, ductile magnesium-zinc nanocomposites, Metall. Mater. Trans. A, 40, 3038, 10.1007/s11661-009-0013-0

Rashad, 2013, Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium–titanium alloys, J. Magn. Alloy, 1, 242, 10.1016/j.jma.2013.09.004

Mallick, 2012, Deformation behaviour of Mg/Y2O3 nanocomposite at elevated temperatures, Mater. Sci. Eng. A, 551, 222, 10.1016/j.msea.2012.04.116

Chen, 2013, Dynamic tensile response of magnesium nanocomposites and the effect of nanoparticles, Mater. Sci. Eng. A, 582, 359, 10.1016/j.msea.2013.06.052

Nguyen, 2009, On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B, 500, 233

Baboian, 2005

Kukreja, 2009, Enhancing corrosion resistance of Mg alloy AZ31B in NaCl solution using alumina reinforcement at nanolength scale, Corros. Eng. Sci. Technol., 44, 381, 10.1179/147842208X356857

Shi, 2010, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52, 579, 10.1016/j.corsci.2009.10.016

Srivatsan, 2011, Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy, J. Mater. Sci., 47, 3621, 10.1007/s10853-011-6209-x

Srivatsan, 2012, Mechanical behavior of a magnesium alloy nanocomposite under conditions of static tension and dynamic fatigue, J. Mater. Eng. Perform., 22, 439, 10.1007/s11665-012-0276-2

Srivatsan, 2012, Influence of nickel particle reinforcement on cyclic fatigue and final fracture behavior of a magnesium alloy composite, Metals (Basel), 2, 143, 10.3390/met2020143

Lim, 2005, Wear of magnesium composites reinforced with nano-sized alumina particulates, Wear, 259, 620, 10.1016/j.wear.2005.02.006

International Magnesium Association