Magnesium and its alloys as orthopedic biomaterials: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Niinomi, 2002, Recent metallic materials for biomedical applications, Met Mater Trans A, 33, 477, 10.1007/s11661-002-0109-2
Puleo, 1995, Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells, J Appl Biomater, 6, 109, 10.1002/jab.770060205
Jacobs, 1998, Corrosion of metal orthopaedic implants, J Bone Joint Surg, 80, 268, 10.2106/00004623-199802000-00015
Lhotka, 2003, Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements, J Orthop Res, 21, 189, 10.1016/S0736-0266(02)00152-3
Jacobs, 1998, Metal release in patients who have had a primary total hip arthroplasty, J Bone Joint Surg, 80, 1447, 10.2106/00004623-199810000-00006
Jacobs, 2003, Metal degradation products: a cause for concern in metal-metal bearings?, Clin Orthop Relat Res, 417, 139, 10.1097/01.blo.0000096810.78689.62
Granchi, 1999, Cytokine release in mononuclear cells of patients with Co–Cr hip prosthesis, Biomaterials, 20, 1079, 10.1016/S0142-9612(99)00004-6
Niki, 2003, Metal ions induce bone-resorption cytokyne production through the redox pathway in synoviocytes and bone marrow macrophages, Biomaterials, 24, 1447, 10.1016/S0142-9612(02)00531-8
Haynes, 1998, Variation in cytokines induced by particles from different prosthetic materials, Clin Orthop Relat Res, 352, 223, 10.1097/00003086-199807000-00026
Wang, 1996, Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro, Biomaterials, 17, 2233, 10.1016/0142-9612(96)00072-5
Bi, 2001, Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts, J Biomed Mater Res, 83, 501
Allen, 1997, The effects of particulate cobalt, chromium and cobalt-chromium alloy on human osteoblast-like cells in vitro, J Bone Joint Surg, 79, 475, 10.1302/0301-620X.79B3.7415
Wang, 2002, Titanium particles suppress expression of osteoblastic phenotype in human messenchymal stem cells, J Orthop Res, 20, 1175, 10.1016/S0736-0266(02)00076-1
Nagels, 2003, Stress shielding and bone resorption in shoulder arthroplasty, J Shoulder Elbow Surg, 12, 35, 10.1067/mse.2003.22
Park, 2003, Metallic biomaterials
DeGarmo, 1979
Gibson, 1988
Gibson, 1988
Choi, 1998, Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3, J Am Ceram Soc, 81, 1743, 10.1111/j.1151-2916.1998.tb02543.x
Thamaraiselvi, 2004, Biological evaluation of bioceramic materials—a review, Trends Biomater Artif Organs, 19, 9
Water, electrolyte mineral and acid/base metabolism. Section 2. Endocrine & Metabolic Disorders. Merk Manual of Diagnosis and Therapy[ Chapter 12].
Saris, 2000, Magnesium: an update on physiological, clinical and analytical aspects, Clin Chim Acta, 294, 1, 10.1016/S0009-8981(99)00258-2
Vormann, 2003, Magnesium: nutrition and metabolism, Mol Aspects Med, 24, 27, 10.1016/S0098-2997(02)00089-4
Wolf, 2003, Chemistry and biochemistry of magnesium, Mol Aspects Med, 24, 3, 10.1016/S0098-2997(02)00087-0
Hartwig, 2001, Role of magnesium in genomic stability, Mutat Res/Fund Mol Mech Mutagen, 475, 113, 10.1016/S0027-5107(01)00074-4
Revell, 2004, The effect of mangesium ions on bone bonding to hydroxyapatite, Key Eng Mater, 254–256, 447, 10.4028/www.scientific.net/KEM.254-256.447
Zreiqat, 2002, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J Biomed Mater Res, 62, 175, 10.1002/jbm.10270
Yamasaki, 2002, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion, J Biomed Mater Res, 62, 99, 10.1002/jbm.10220
Yamasaki, 2003, Action of FG-MgCO3 Ap-collagen composite in promoting bone formation, Biomaterials, 24, 4913, 10.1016/S0142-9612(03)00414-9
Witte, 2005, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557, 10.1016/j.biomaterials.2004.09.049
Wen, 2001, Processing of biocompatible porous Ti and Mg, Scripta Mater, 45, 1147, 10.1016/S1359-6462(01)01132-0
Lambotte, 1932, L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse, Bull Mém Soc Nat Chir, 28, 1325
Troitskii, 1944, The resorbing metallic alloy ‘Osteosinthezit’ as material for fastening broken bone, Khirurgiia, 8, 41
McBride, 1938, Absorbable metal in bone surgery, J Am Med Assoc, 111, 2464, 10.1001/jama.1938.02790530018007
Verbrugge, 1934, Le Matériel Métallique Résorbable En Chirurgie Osseuse, Presse Med, 23, 460
Znamenskii, 1945, Metallic osteosynthesis by means of an apparatus made of resorbing metal, Khirurgiia, 12, 60
Scholz W. Supporting or sustaining part for implant in bone composed of porous magnesium filled with calcium phosphate. German patent no. 102 41 572, 2004.
Witte F, Crostack HA, Nellesen J, Beckmann F. Characterization of degradable magnesium alloys as orthopaedic implant material by synchrotron-radiation-based microtomography. 2001. http://www-hasylab.desy.de/science/annual_reports/2001_report/part1/contrib/47/5461.pdf
Stroganov GB, Savitsky E, Mikhailovich T, Nina M, Terekhova V, Fedorovna V, et al. Magnesium-base alloys for use in bone surgery. US Patent no. 3,687,135, 1972.
Serre, 1998, Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts, J Biomed Mater Res, 42, 626, 10.1002/(SICI)1097-4636(19981215)42:4<626::AID-JBM20>3.0.CO;2-S
Li, 2004, Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid, SurfCoat Technol, 185, 92
Kuwahara, 2001, Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution, Mater Trans, 42, 1317, 10.2320/matertrans.42.1317
Hench L. Bioactive materials: the potential for tissue regeneration. In: Founders award, society for biomaterials, 24th annual meeting, San Diego, CA; 22–26 April 1998. p. 511–8.
Habibovic, 2002, Biomimetic hydroxyapatite coatings on metal implants, J Am Ceram Soc, 85, 517, 10.1111/j.1151-2916.2002.tb00126.x
Leonor, 2002, In situ study of partially crystallized bioglass® and hydroxyapatite in vitro bioactivity using atomic force microscopy, J Biomed Mat Res, 62, 82, 10.1002/jbm.10289
Vallet-Regi, 1999, XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-layer on sol-gel glasses, J Biomed Mater Res, 44, 416, 10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S
Li, 1997, A bone-bonding polymer induces hydroxycarbonate apatite formation in vitro, J Biomed Mater Res, 34, 79, 10.1002/(SICI)1097-4636(199701)34:1<79::AID-JBM11>3.0.CO;2-K
Uchida, 2001, Apatite-forming ability of sodium-containing titania gels in a simulated body fluid, J Am Ceram Soc, 84, 2969, 10.1111/j.1151-2916.2001.tb01122.x
Jonasova, 2004, Biomimetic apatite formation on chemically treated titanium, Biomaterials, 25, 1187, 10.1016/j.biomaterials.2003.08.009
Ma, 2003, Biomimetic processing of nanocrystallite bioactive apatite coating on titanium, Nanotechnology, 14, 619, 10.1088/0957-4484/14/6/310
Siebers, 2005, Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review, Biomaterials, 26, 137, 10.1016/j.biomaterials.2004.02.021
Sampathkumaran, 2001, Hydroxyapatite coatings on titanium, Adv Eng Mater, 3, 401, 10.1002/1527-2648(200106)3:6<401::AID-ADEM401>3.0.CO;2-L
Vasudev, 2004, In vivo evaluation of a biomimetic apatite coating grown on titanium surfaces, J Biomed Mater Res, 69A, 629, 10.1002/jbm.a.30028
Schliephake, 2003, Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible, J Biomed Mater Res, 64A, 225, 10.1002/jbm.a.10363
Panjian, 2003, Biomimetic nano-apatite coating capable of promoting bone ingrowth, J Biomed Mater Res, 66A, 79, 10.1002/jbm.a.10519
Kuroda, 2004, A low temperature biomimetic calcium phosphate surface enhances early implant fixation in a rat model, J Biomed Mater Res, 70A, 66, 10.1002/jbm.a.30062
Shaw, 2003, Corrosion resistance of magnesium alloys
Kaesel VT, Bach PT, Haferkamp H, Witte F, Windhagen H. Approach to control the corrosion of magnesium by alloying, In: Kainer KU, editor. Proceedings of the sixth international conference magnesium alloys and their applications. New York: Wiley-Vch; 2004. p. 534–9.
Grey, 2002, Protective coatings on magnesium and its alloys—a critical review, J Alloys Compounds, 336, 88, 10.1016/S0925-8388(01)01899-0
Karageorgiou, 2005, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474, 10.1016/j.biomaterials.2005.02.002
Wen, 2004, Compressibility of porous magnesium foam: dependency on porosity and pore size, Mater Lett, 58, 357, 10.1016/S0167-577X(03)00500-7
Banhart, 2001, Manufacture, characterization and application of cellular metals and metal foams, Prog Mater Sci, 46, 559, 10.1016/S0079-6425(00)00002-5
Niemeyer M, Haferkamp H, Bormann D. “MF3: Magnesium foam as bioresorbable implants” in DFG Priority Programme. Cellular Metals. 2002. http://www.spp-metallschaeume.uni-erlangen.de/Projects/MF3.pdf
Yamada, 2000, Processing of cellular magnesium materials, Adv Eng Mat, 2, 184, 10.1002/(SICI)1527-2648(200004)2:4<184::AID-ADEM184>3.0.CO;2-W
Reifenrath J, Palm C, Mueller P, Hauser H, Crostack HA, Nellesen J, et al. Subchondral plate reconstruction by fast degrading magnesium scaffolds influence cartilage repair in osteochondral defects. http://www.ors.org/Transactions/51/1347.pdf