Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aikman A B, Harrison T M, Lin D. 2008. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 274: 14–23
Allègre C J, Rousseau D. 1984. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet Sci Lett, 67: 19–34
An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66
Andersen T B. 1998. Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics, 285: 333–351
Arculus R J. 1981. Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics, 75: 113–133
Armstrong R L, Harmon R S. 1981. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil Trans R Soc Londo, 301: 443–472
Atherton M P, Ghani A A. 2002. Slab breakoff: A model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 62: 65–85
Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144–146
Barker F, Arth J G. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4: 596–600
Beaumont C, Jamieson R A, Butler J P, et al. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116–129
Becker H. 1993. Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the central Alps. Geology, 21: 599–602
Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 70: 1188–1214
Belousova E A, Kostitsyn Y A, Griffin W L, et al. 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119: 457–466
Berger A, Bousquet R. 2008. Subduction-related metamorphism in the Alps: Review of isotopic ages based on petrology and their geodynamic consequences. Geolog Soc, 298: 117–144
Berger J, Féménias O, Ohnenstetter D, et al. 2010. New occurrence of UHP eclogites in Limousin (French Massif Central): Age, tectonic setting and fluid-rock interactions. Lithos, 118: 365–382
Blanckenburg F, Davies J H. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120–131
Bonin B, Azzouni-Sekkal A, Bussy F, et al. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45: 45–70
Brandon C, Romanowicz B. 1986. A “no-lid” zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves. J Geophys Res, 91: 6547–6564
Bussy F, Hernandez J, von Raumer J. 2000. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Geolog Soc America Spec Pap, 350: 221–233
Cawood P A, Kröner A, Collins W J, et al. 2009. Accretionary orogens through Earth history. In: Cawood P A, Kroner A, eds. Earth Accretionary Systems in Space and Time. London: The Geological Societry. 1–36
Champion, D C, Smithies, R H. 2003. Archaean granites. In: Blevin P, Jones M, Chappell B, eds. Magmas to Mineralisation: The Ishihara Symposium. Geoscience, Australia. 19–24
Chemenda A I, Burg J P, Mattauer M. 2000. Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth Planet Sci Lett, 174: 397–409
Chemenda A I, Mattauer M, Malavieille J, et al. 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth Planet Sci Lett, 132: 225–232
Chen B, Jahn B M, Suzuki K. 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology, 41: 91–94
Chen D L, Liu L, Sun Y, et al. 2012. Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China: Partial melting during exhumation. Lithos, 136–139: 187–200
Chen Y X, Song S G, Niu Y L, et al. 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochim Cosmochim Acta, 132: 311–336
Chen Y X, Xia X H, Song S G. 2012. Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen, NW China: Evidence for decompression melting of oceanic slab. Chin Sci Bull, 57: 2289–2301
Chen Y X, Zheng Y F, Hu Z C. 2013. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156–159: 69–96
Chopin C. 2003. Ultrahigh-pressure metamorphism; tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14
Chung S L, Chu, M F, Zhang Y, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev, 68: 173–196
Chung S L, Liu D, Ji J, et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021–1024
Condie K C, Aster R C. 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Res, 180: 227–236
Condie K C, Belousova E, Griffin W L, et al. 2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res, 15: 228–242
Condie K C. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet Sci Lett, 163: 97–108
Cuthbert S J, Carswell D A, Krogh-Ravna E J, et al. 2000. Eclogites and eclogites in the Western Gneiss region, Norwegian Caledonides. Lithos, 52: 165–195
Dai L Q, Zhao Z F, Zheng Y F, et al. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 229–244
Dai L Q, Zhao Z F, Zheng Y F, et al. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional maficultramafic rocks in the Dabie orogen. Chem Geol, 334: 99–121
Dai L Q, Zhao Z F, Zheng Y F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762–3779
Dallagiovanna G, Gaggero L, Maino M, et al. 2009. U-Pb zircon ages for post-Variscan volcanism in the Ligurian Alps (Northern Italy). J Geol Soc, 166: 101–114
Davies J, von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 129: 85–102
Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665
Dhuime B, Hawkesworth C J, Cawood P A, et al. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335: 1334–1336
Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: 1–18
Ding L, Zhong D, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett, 192: 423–438
Dobrzhinetskaya L, Green H W, Wang S. 1996. Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science, 271: 1841–1845
Drummond M S, Defant M J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geol Soc Res: Solid Earth, 95: 21503–21521
Ernst W G, Liou J G. 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology, 23: 353–356
Faure M, Cocherie A, Mezeme E B, et al. 2010. Middle Carboniferous crustal melting in the Variscan Belt: New insights from U-Th-Pbtot. monazite and U-Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res, 18: 653–673
Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840
Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897
Gao X Y, Zheng Y F, Chen Y X, et al. 2013. Trace element composition of continentally subducted slab-derived melt: Insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorph Geol, 31: 453–468
Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorph Geol, 30: 193–212
Gerdes A, Wörner G, Henk A. 2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith. J Geol Soc, 157: 577–587
Gerya T V, Yuen D A, Maresch W V. 2004. Thermomechanical modelling of slab detachment. Earth Planet Sci Lett, 226: 101–116
Ghani A A, Atherton M P. 2006. The chemical character of the Late Caledonian Donegal Granites, Ireland, with comments on their genesis. Earth Sci, 97: 437–454
Gordon S M, Little T A, Hacker B R, et al. 2012. Multi-stage exhumation of young UHP-HP rocks: Timescales of melt crystallization in the D’Entrecasteaux Islands, southeastern Papua New Guinea. Earth Planet Sci Lett, 351: 237–246
Gordon S M, Whitney D L, Teyssier C, et al. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction. Lithos, 170–171: 35–53
Guo J H, Chen F K, Zhang X M, et al. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, Eastern China: Zircon U-Pb geochronology (in Chinese). Acta Petrolog Sin, 21: 1281–1301
Guo Z, Wilson M, Liu J. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205–224
Gutiérrez-Alonso G, Murphy J B, Fernández-Suárez J, et al. 2011. Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle. Geology, 39: 155–158
Handy M R, Schmid S, Bousquet R, et al. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Sci Rev, 102: 121–158
Harris N B W, Caddick M, Kosler J, et al. 2004. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J Metamorph Geol, 22: 249–264
Harrison T M, Blichert-Toft J, Müller W, et al. 2005. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science, 310: 1947–1950
Harrison T M, Lovera O M, Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899–902
Hawkesworth C, Cawood P, Kemp T, et al. 2009. Geochemistry: A matter of preservation. Science, 323: 49–50
He Y, Li S, Hoefs J, et al. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta, 75: 3815–3838
Holt W E, Wallace T C. 1990. Crustal thickness and upper mantle velocities in the Tibetan Plateau region from the inversion of regional Pnl waveforms: Evidence for a thick upper mantle lid beneath southern Tibet. J Geophys Res, 95: 12499–12525
Hou Z Q, Gao Y F, Qu X M, et al. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139–155
Houseman G A, McKenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geol Soc Res: Solid Earth, 86: 6115–6132
Houseman G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int, 128: 125–150
Iizuka T, Komiya T, Ueno Y, et al. 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Res, 153: 179–208
Imayama T, Takeshita T, Yi K, et al. 2012. Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the far-eastern Nepal Himalaya. Lithos, 134: 1–22
Jahn B M, Glikson A Y, Peucat J J, et al. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution. Geochim Cosmochim Acta, 45: 1633–1652
Kaneko Y, Katayama I, Yamamoto H, et al. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol, 21: 589–599
Kylander-Clark A R C, Hacker B R, Mattinson C G. 2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 321: 115–120
Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171–1174
Lardeaux J M, Ledru P, Daniel I, et al. 2001. The Variscan French Massif Central-A new addition to the ultra-high pressure metamorphic ‘club’: Exhumation processes and geodynamic consequences. Tectonophysics, 332: 143–167
Leech M L, Singh S, Jain A K, et al. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett, 234: 83–97
Li S, Wang T, Wilde S A, et al. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci Rev, 126: 206–234
Li W C, Chen R X, Zheng Y F, et al. 2014. Dehydration and anatexis of UHP metagranite during continental collision in the Sulu orogen. J Metamorphic Geol, 32: 915–936
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182
Liou J G, Ernst, W G, Song S G, et al. 2009b. Tectonics and HP-UHP metamorphism of northern Tibet-Preface. J Asian Earth Sci, 35: 191–198
Liou J G, Ernst, W G, Zhang R Y, et al. 2009a. Ultrahigh-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199–231
Liou J G, Tsujimori T, Zhang R Y, et al. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Intl Geol Rev, 46: 1–27
Liu D Y, Jian P, Kröner A, et al. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth Planet Sci Lett, 250: 650–666
Liu D, Zhao Z D, Zhu D C, et al. 2014. Post-collisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta, 143: 207–231
Liu F L, Liou J G. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J Asian Earth Sci, 40: 1–39
Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorph Geol, 30: 887–906
Liu L, Zhang J, Green II H W, et al. 2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Earth Planet Sci Lett, 263: 180–191
Liu Q, Hermann J, Zhang J F. 2013. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91–1093.
Liu X C, Wu Y B, Gao S, et al. 2014a. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochim Cosmochim Acta, 144: 1–24
Long X, Yuan C, Sun M, et al. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res, 21: 637–653
Ma C, Li Z, Ehlers C, et al. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos, 45: 431–456
Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243: 581–593
Mahéo G, Guillot S, Blichert-Toft J, et al. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Planet Sci Lett, 195: 45–58
Maino M, Dallagiovanna G, Gaggero L, et al. 2012. U-Pb zircon geochronological and petrographic constraints on late to post-collisional Variscan magmatism and metamorphism in the Ligurian Alps, Italy. Geolog J, 47: 632–652
Marotta A M, Fernàndez M, Sabadini R. 1998. Mantle unrooting in collisional settings. Tectonophysics, 296: 31–46
Martin H, Moyen J F, Guitreau M, et al. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198: 1–13
Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24
Martin H. 1994. The Archean grey gneisses and the genesis of continental crust. In: Concie K C, ed. Archean Crustal Evolution. Amsterdam: Elsevier. 205–259
Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 38: 485–594
Mattinson C G, Wooden J L, Liou J G, et al. 2006. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China. Am J Sci, 306: 683–711
McKenzie D P. 1978. Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions. Geophys J R Astron Soc, 55: 217–254
McKerrow W S, Mac Niocaill C, Dewey J F. 2000. The Caledonian orogeny redefined. J Geol Soc, 157: 1149–1154
Meng F, Zhang J, Yang J. 2005. Tectono-thermal event of post-HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China: Isotopic and geochemical evidence of granite and gneiss (in Chinese). Acta Petrolog Sin, 21: 45–56
Miller C, Schuster R, Klötzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol, 40: 1399–1424
Mo X, Hou Z, Niu Y, et al. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96: 225–242
Mo X, Niu Y, Dong G, et al. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem Geol, 250: 49–67
Moyen J F, Stevens G. 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. In: Benn K, Mareschal J C, Condie K C, eds. Archean Geodynamics and Environments. Washington: AGU. 149–175
Moyen J F. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123: 21–36
Nagel T J, Hoffmann J E, Münker C. 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology, 40: 375–378
Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China (in Chinese). Geolog J Chin Univ, 11: 9–46
Niu Y L. 2014. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tect Met, 10: 1–24
Niu Y, Mo X, Dong G, et al. 2007. Continental collision zones are primary sites of net continental crustal growth: Evidence from the Linzizong volcanic succession in southern Tibet. American Geophysical Union
Niu Y, O’Hara M J. 2009. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 112: 1–17
Niu Y, Zhao Z, Zhu D C, et al. 2013. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Sci Rev, 127: 96–110
Offler R, Murray C. 2011. Devonian volcanics in the New England Orogen: Tectonic setting and polarity. Gondwana Res, 19: 706–715
Ogasawara Y, Fukasawa K, Maruyama S. 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. Am Miner, 87: 454–461
Paquette J L, Ménot R P, Pin C, et al. 2003. Episodic and short-lived granitic pulses in a post-collisional setting: Evidence from precise U-Pb zircon dating through a crustal cross-section in Corsica. Chem Geol, 198: 1–20
Pearcy L G, DeBari S M, Sleep N H. 1990. Mass balance calculations for two sections of island arc crust and implications for the formation of continents. Earth Planet Sci Lett, 96: 427–442
Piromallo C, Faccenna C. 2004. How deep can we find the traces of Alpine subduction? Geophys Res Lett, 31: L06605. doi: 10.1029/2003GL019288
Pitcher W S. 1983. Granite: Typology, geological environment and melting relationships. In: Atherton M P, Gribble C D, eds. Migma Melt Metamorph. 277–287
Prelević D, Akal C, Foley S F, et al. 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia, Turkey. J Petrol, 53: 1019–1055
Rapp R P, Shimizu N, Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605–609
Ratschbacher L, Hacker B R, Webb L E, et al. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. J Geol Soc Res, 105: 13303–13338
Rogers J J W, Greenberg J K. 1990. Late-orogenic, post-orogenic, and anorogenic granites: Distinction by major-element and trace-element chemistry and possible origins. J Geol, 291–309
Rosenberg C L, Handy M R. 2005. Experimental deformation of partially melted granite revisited: Implications for the continental crust. J Metamorph Geol, 23: 19–28
Rosenberg C L. 2004. Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps. Tectonics, 23: TC3002
Rubatto D, Chakraborty S, Dasgupta S. 2013. Time scales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contr Miner Petrol, 165: 349–372
Rubatto D, Gebauer D, Compagnoni R. 1999. Dating of eclogite-facies zircons: The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett, 167: 141–158
Rubatto D, Gebauer D, Fanning M. 1998. Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: Implications for the geodynamic evolution of the Central and Western Alps. Contr Miner Petrol, 132: 269–287
Rudnick R L, Gao S, Ling W, et al. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77: 609–637
Schmädicke E, Mezger K, Cosca M A, et al. 1995. Variscan Sm-Nd and Ar-Ar ages of eclogite facies rocks from the Erzgebirge, Bohemian Massif. J Metam Geol, 13: 537–552
Scholl D W, von Huene R. 2007. Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc America Mem, 200: 9–32
Searle M P, Simpson R L, Law R D, et al. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J Geol Soc, 160: 345–366
Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115–125
Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742–746
Song S G, Niu Y L, Su L, et al. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Res, 23: 1378–1401
Song S G, Niu Y L, Su L, et al. 2014a. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Sci Rev, 129: 59–84
Song S G, Niu Y L, Su L, et al. 2014b. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochim Cosmochim Acta, 130: 42–62
Song S G, Niu Y L, Wei C J, et al. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-An eastern extension of the Lhasa Block. Lithos, 120: 327–346
Song S G, Niu Y L, Zhang L F, et al. 2009. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation: An example from North Qilian and North Qaidam HP-UHP belts. Acta Petrolog Sin, 25: 2067–2077
Song S G, Su L, Niu Y L. 2009. Generation of adakite: Melting of eclogite during exhumation of UHPM terrane. Goldschmidt Conference Abstracts, A1252
Song S G, Zhang L F, Chen J, et al. 2005a. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for ultradeep-origin and hydroxyl defects in mantle garnets. Am Miner, 90: 814–820
Song S G, Zhang L F, Niu Y L, et al. 2005b. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett, 234: 99–118
Song S G, Zhang L F, Niu Y L, et al. 2006. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan Plateau based on geochemical and geochronological data (in Chinese). J Petrol, 47: 435–455
Song S G, Zhang L F, Niu Y L. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Miner, 89: 1330–1336
Spengler D, Van Roermund H L M, Drury M R, et al. 2006. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature, 440: 913–917
Stern R J, Scholl D W. 2010. Yin and yang of continental crust creation and destruction by plate tectonic processes. Int Geol Rev, 52: 1–31
St-Onge M R, Rayner N, Palin R M, et al. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol, 31: 469–504
Streule M J, Searle M P, Waters D J, et al. 2010. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 29: TC5011
Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265
Taylor S R. 1977. Island arc models and the composition of the continental crust. In: Talwani M, Pitman W C III, eds. Island Arcs, Deep Sea Trenches, and Back-Arc Basins. Am Geophys Union, Maurice Ewing Ser, 1: 325–335
Thomas W A. 1983. Continental margins, orogenic belts, and intracratonic structures. Geology, 11: 270–272
Torsvik T H, Rehnström E F. 2003. The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics, 362: 67–82
Torsvik T H, Smethurst M A, Meert J G, et al. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic-A tale of Baltica and Laurentia. Earth-Sci Rev, 40: 229–258.
Turner S, Arnaud N, LIU J, et al. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 37: 45–71
Valle Aguado B, Azevedo M R, Schaltegger U, et al. 2005. U-Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos, 82: 169–184
van de Zedde D M A, Wortel M J R. 2001. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 20: 868–882
van Hunen J, Allen M B. 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth Planet Sci Lett, 302: 27–37
van Roermund R D. 1998. Ultra-high pressure (P>6 GPa) garnet peridotites in Western Norway: Exhumation of mantle rocks from >185 km depth. Terra Nova, 10: 295–301
van Roermund R D. 2000. Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin. J Metamorp Geol, 18: 135–147
van Blanckenburg F, Davies J H. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120–131
Wain A. 1997. New evidence for coesite in eclogite and gneisses: Defining an ultrahigh-pressure province in the Western Gneiss region of Norway. Geology, 25: 927–930
Wang C, Song S G, Niu Y L, et al. 2015. Late Triassic Adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 212: 353–367
Wang M J, Song S G, Niu Y L, et al. 2014. Post-collisional magmatism: Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos, 210–211: 181–198
Wang Q, Wyman D A, Xu J, et al. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609–2636
Wang Q, Xu J F, Jian P, et al. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J Petrol, 47: 119–144
Warren C J, Beaumont C, Jamieson R A. 2008. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci Lett, 267: 129–145
Whalen J B, McNicoll V J, van Staal C R, et al. 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos, 89: 377–404
Whitney D L, Teyssier C, Rey P F. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1: 323–327
Wilke F D H, O’Brien P J, Gerdes A, et al. 2010. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. European J Miner, 22: 703–719
Willbold M, Hegner E, Stracke A, et al. 2009. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet Sci Lett, 279: 44–52
Williams H, Turner S, Kelley S, et al. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29: 339–342
Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc, 164: 31–47
Wu C L, Gao Y H, Li Z L, et al. 2014. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Sci China Earth Sci, 57: 2945–2965
Wu C L, Gao Y H, Wu, S, et al. 2007. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam Basin, NW China (in Chinese with English abstract). Acta Petrol Sin, 23: 1861–1875
Wu C L, Wooden J L, Robinson P T, et al. 2009. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam. Sci China Ser D-Earth Sci, 52: 1771–1790
Wu C L, Wooden J L, Yang J S, et al. 2006. Granitic magmatism in the North Qaidam Early Paleozoic ultrahigh-pressure metamorphic belt, northwest China. Int Geol Rev, 48: 223–240
Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36–65
Xiao W J, Windley B F, Huang B C, et al. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci, 98: 1189–1217
Xu H, Ma C, Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chem Geol, 240: 238–259
Xu S T, Okay A I, Ji S Y, et al. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80–82
Yang J, Godard G, Kienast J R, et al. 1993. Ultrahigh-pressure (60 kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China. J Geol: 541–554
Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–460
Yang Q L, Zhao Z F, Zheng, Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146–147: 164–182
Ye K, Cong B, Ye D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Rev Earth Planet Scis, 28: 211–280
Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131
Yu S Y, Zhang J X, Real P G D. 2012. Geochemistry and zircon U/Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: Constraints on the timing and nature of regional tectonothermal events. Gondwana Res, 21: 167–179
Zeng L, Gao L E, Xie K, et al. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 303: 251–266
Zhang G B, Niu Y L, Song S G, et al. 2015. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, doi: http://dx.doi.org/ 10.1016/j.lithos.2014.12.009
Zhang G B, Zhang L F, Christy A G, et al. 2014. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China: Constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos, 205: 15–27
Zhang J X, Yang J S, Mattinson C G, et al. 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 84: 51–76
Zhang J, Zhao Z F, Zheng Y F et al. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136–139: 225–245
Zhang J, Zhao Z F, Zheng Y F, et al. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119: 512–536
Zhang Z M, Dong X, Xiang H, et al. 2014a. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. J Metamorp Geol, 33: 1–21
Zhang Z M, Xiang H, Dong X, et al. 2014b. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212–215: 1–15
Zhao Z D, Mo X X, Dilek Y, et al. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190–212
Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports. 3
Zhao Z F, Zheng Y F, Wei C S, et al. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophy Res Lett, 31: L22602
Zhao Z F, Zheng Y F, Wei C S, et al. 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83: 1–28
Zhao Z F, Zheng Y F, Wei C S, et al. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248–272
Zhao Z F, Zheng Y F, Wei C S, et al. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99–11
Zhao Z F, Zheng Y F, Zhang J, et al. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88
Zhao Z F, Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rcoks in the Dabie-Sulu orogenic belt. Sci China Ser D-Earth Sci, 52: 1295–1318
Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358
Zheng Y F, Xia Q X, Chen R X, et al. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374
Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377
Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48