Macroscopic probabilistic cracking approach for the numerical modelling of fluid leakage in concrete

Annals of Solid and Structural Mechanics - Tập 7 - Trang 1-16 - 2015
Giuseppe Rastiello1,2, Jean-Louis Tailhan1, Pierre Rossi1, Stefano Dal Pont1,3
1IFSTTAR, Université Paris-Est, Marne-la-Vallée Cedex 2, France
2LMT (ENS Cachan, CNRS, Université Paris Saclay), Cachan, France
3Laboratoire 3SR, CNRS/UJF/INPG, Domaine Universitaire, Grenoble, France

Tóm tắt

The article presents a numerical finite element study of fluid leakage in concrete. Concrete cracking is numerically modelled in the framework of a macroscopic probabilistic approach. Material heterogeneity and the related mechanical effects are taken into account by defining the elementary mechanical properties according to spatially uncorrelated random fields. Each finite element is considered as representative of a volume of heterogeneous material, whose mechanical behaviour depends on its own volume. The parameters of the statistical distributions defining the elementary mechanical properties thus vary over the computational mesh element-by-element. A weak hydro-mechanical coupling assumption is introduced to represent the influence of cracking on the variation of transfer properties: it is assumed that the mechanical cracking of a finite element induces a loss of isotropy of its own permeability tensor. At the elementary level, an experimentally enhanced parallel plates model is used to relate the local crack permeability to the elementary crack aperture. A Monte Carlo-like approach allows to statistically validate the numerical method. The self-consistency of the proposed modelling strategy is finally explored through the numerical simulation of the hydro-mechanical splitting test, recently proposed by authors to evaluate the real-time evolution of the transfer properties of a concrete sample under loading.

Tài liệu tham khảo

Akhavan A, Shafaatian S, Rajabipour F (2012) Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem Concr Res 42(2):313–320 Aldea C, Ghandehari M, Shah S, Karr A (2000) Estimation of water flow through cracked concrete under load. ACI Mater J 97(5):567–575 Andrade C, Gonzalez J (2004) Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater Corros 29(8):515–519 Barani O, Khoei A, Mofid M (2011) Modeling of cohesive crack growth in partially saturated porous media: a study on the permeability of cohesive fracture. Int J Fract 167(1):15–31 Baroghel-Bouny V, Kinomura K, Thiery M, Moscardelli S (2011) Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem Concr Compos 33:832–847 Bary B (1996) Etude du couplage hydraulique-mécanique dans le béton endommagé. PhD thesis, Université Paris 6 Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater struct 16(3):155–177 Bodin J, Delay F, De Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol J 11(4):418–433 Boulay C, Dal Pont S, Belin P (2009) Real-time evolution of electrical resistance in cracking concrete. Cem Concr Res 39:825–831 Briffaut M, Benboudjema F, Torrenti J, Nahas G (2011) Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Eng struct 33(4):1390–1401 Callari C, Armero F (2002) Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media. Comput Methods Appl Mech Eng 191(39):4371–4400 Carrier B, Granet S (2011) Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng Fract Mech 79:312–328 Colliat JB, Hautefeuille M, Ibrahimbegovic A, Matthies H (2007) Stochastic approach to size effect in quasi-brittle materials. Comptes Rendus Mécanique 335(8):430–435 Coussy O (2004) Poromechanics. Wiley, New York Crisfield M (1982) Accelerated solution techniques and concrete cracking. Comput Methods Appl Mech Eng 33(1):585–607 Dal Pont S, Ehrlacher A (2004) Numerical and experimental analysis of chemical dehydration, heat and mass transfers in a concrete hollow cylinder submitted to high temperatures. Int J Heat Mass Transf 47(1):135–147 Dal Pont S, Schrefler B, Ehrlacher A (2005) Experimental and finite element analysis of a hollow cylinder submitted to high temperatures. Mater Struct 38(7):681–690 Dal Pont S, Durand S, Schrefler B (2007) A multiphase thermo-hydro-mechanical model for concrete at high temperatures: finite element implementation and validation under loca load. Nucl Eng Des 237(22):2137–2150 Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris De Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2(1):35–46 Dormieux L, Kondo D (2004) Approche micomécanique du couplage perméabilité-endommagement. CR Mec 332(2):135–140 Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524 Feller W (2008) An introduction to probability theory and its applications, vol 2. Wiley, New York Freudenthal A (1950) The inelastic behavior of engineering materials and structures. Wiley, New York Gawin D, Majorana C, Schrefler B (1999) Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech Cohesive Frict Mater 4(1):37–74 Gawin D, Pesavento F, Schrefler B (2002) Simulation of damage-permeability coupling in hygro-thermo-mechanical analysis of concrete at high temperature. Commun Numer Methods Eng 18(2):113–119 Granger L, Rieg C, Touret J, Fleury F, Nahas G, Danisch R, Brusa L, Millard A, Laborderie C, Ulm F, Contri P, Schimmelpfennig K, Barr F, Firnhaber M, Gauvain J, Coulon N, Dutton L, Tuson A (2001) Containment evaluation under severe accidents (cesa): synthesis of the predictive calculations and analysis of the first experimental results obtained on the civaux mock-up. Nucl Eng Des 209(1–3):155–163 Hashin Z (1983) Analysis of composite materials. J Appl Mech 50(2):481–505 Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781 Ibrahimbegovic A, Colliat JB, Hautefeuille M, Brancherie D, Melnyk S (2011) Probability based size effect representation for failure of civil engineering structures built of heterogeneous materials. In: Papadrakakis M, Stefanou G, Papadopoulos V (eds) Computational methods in stochastic dynamics. Computational methods in applied sciences, vol 22. Springer, Netherlands, pp 291–313 Irwin G (1968) Linear fracture mechanics, fracture transition, and fracture control. Eng Fract Mech 1(2):241–257 Jirásek M (2011) Damage and smeared crack models. In: Hofstetter G, Meschke G (ed) Numerical modeling of concrete cracking. CISM International Centre for Mechanical Sciences, vol 532. Springer, Vienna, pp 1–49 Jirásek M, Zimmermann T (1998) Rotating crack model with transition to scalar damage. J Eng Mech 124(3):277–284 Jourdain X, Colliat JB, DeSa C, Benboudjema F, Gatuingt F (2014) Upscaling permeability for fractured concrete: mesomacro numerical approach coupled to strong discontinuities. Int J Numer Anal Methods Geomech 38(5):536–550. doi:10.1002/nag.2223 Larsson J, Larsson R (2000) Finite-element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium. Int J Solids Struct 37(48):7231–7257 Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge Lewis R, Schrefler B (1987) The finite element method in the deformation and consolidation of porous media. Wiley, New York, NY Meftah F, Dal Pont S, Schrefler B (2012) A three-dimensional staggered finite element approach for random parametric modeling of thermo-hygral coupled phenomena in porous media. Int J Numer Anal Methods Geomech 36(5):574–596 Meschke G, Grasberger S, Becker C, Jox S (2011) Numerical modeling of concrete cracking. Springer, chap Smeared Crack and X-FEM Models in the Context of Poromechanics, pp 265–327 Millard A, L’Hostis V (2012) Modelling the effects of steel corrosion in concrete, induced by carbon dioxide penetration. Eur J Environ Civil Eng 16(3–4):375–391 Montemor M, Simoes A, Ferreira M (2003) Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 25(4):491–502 Ng A, Small J (1999) A case study of hydraulic fracturing using finite element methods. Can Geotech J 36(5):861–875 Ostoja-Starzewski M (2002) Microstructural randomness versus representative volume element in thermomechanics. Trans Am Soc Mech Eng J Appl Mech 69(1):25–35 Picandet V (2001) Influence d’un endommagement mécanique sur la perméabilité et la diffusivité hydrique des bétons. PhD thesis, LGC, Nantes Picandet V, Khelidj A, Bellegou H (2009) Crack effects on gas and water permeability of concretes. Cem Concr Res 39(6):537–547 Pijaudier-Cabot G, Dufour F, Choinska M (2009) Permeability due to the increase of damage in concrete: from diffuse to localized damage distributions. J Eng Mech 135(9):1022–1028 Pouya A, Ghabezloo S (2010) Flow around a crack in a porous matrix and related problems. Transp Porous Media 84(2):511–532 Ramm E (1981) Strategies for tracing the nonlinear response near limit points. Springer, Berlin Rastiello G (2013) Influence de la fissuration sur le transfert de fluides dans les structures en béton: stratégies de modélisation probabiliste et étude expérimentale. PhD thesis, Université Paris-Est Rastiello G, Boulay C, Dal Pont S, Tailhan J, Rossi P (2014) Real-time water permeability evolution of a localized crack in concrete under loading. Cem Concr Res 56(0):20–28. doi:10.1016/j.cemconres.2013.09.010 Réthoré J, De Borst R, Abellan MA (2007) A two-scale approach for fluid flow in fractured porous media. Int J Numer Methods Eng 71(7):780–800 Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551 Rocco C, Guinea G, Planas J, Elices M (1999) Size effect and boundary conditions in the brazilian test: experimental verification. Mater Struct 32(3):210–217 Rocco C, Guinea G, Planas J, Elices M (1999) Size effect and boundary conditions in the brazilian test: theoretical analysis. Mater Struct 32(6):437–444 Rossi P (1988) Fissuration du béton: du matériau à la structure à l’application de la mécanique linaire de la rupture. PhD thesis, Ecole Nationale des Ponts et Chaussées Rossi P, Tailhan J (2012) Cracking of concrete structures: interest and advantages of the probabilistic approaches. In: Rilem international conference on numerical modelling strategies for sustainable concrete structures, SSCS’2012. Aix-en-Provence, France Rossi P, Wu X (1992) Probabilistic model for material behavior analysis and appraisement of concrete structures. Mag Concr Res 44:271280 Rossi P, Bruhwiler E, Chhuy S, Jenq YS, Shah SP (1990) Fracture properties of concrete as determined by means of wedge splitting tests and tapered double cantilever beam tests. In: Shah SP, Carpinteri A (ed) Fracture mechanics test methods for concrete. RILEM report 5. CRC Press, pp 87–128 Rossi P, Wu X, Le Maou F, Belloc A (1994) Scale effect on concrete in tension. Mater Struct 27(8):437–444 Rossi P, Ulm F, Hachi F (1996) Compressive behavior of concrete: physical mechanisms and modeling. J Eng Mech 122(11):1038–1043 Rots JG, Nauta P, Kuster GMA, Blaauwendraad J (1985) Smeared crack approach and fracture localization in concrete. HERON 30(1) Secchi S, Schrefler BA (2012) A method for 3-D hydraulic fracturing simulation. Int J Fract 178(1-2):245–258 Segura J, Carol I (2004) On zero-thickness interface elements for diffusion problems. Int J Numer Anal Methods Geomech 28(9):947–962 Sellier A, La Borderie C, Torrenti J, Mazars J (2010) The french national project ceos. fr: Assessment of cracking risks for special concrete structures under tchm stresses. In: Proceedings of the sixth international conference on concrete under severe conditions: environment and loading Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Methods Geomech 29(12):1231–1247 Simon H, Nahas G, Coulon N (2007) Airsteam leakage through cracks in concrete walls. Nucl Eng Des 237(15-17):1786–1794 Snow D (1969) A parallel plate model of permeable fractured media. PhD thesis, University of California at Berkley Stroeven M, Askes H, Sluys L (2004) Numerical determination of representative volumes for granular materials. Comput Methods Appl Mech Eng 193(3032):3221–3238. doi:10.1016/j.cma.2003.09.023 Su X, Yang Z, Liu G (2010) Monte carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3d study. Int J Solids Struct 47(17):2336–2345 Syroka-Korol E, Tejchman J, Mrz Z (2013) Fe calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Eng Struct 48:205–219. doi:10.1016/j.engstruct.2012.09.013 Tailhan JL, Dal Pont S, Rossi P (2010) From local to global probabilistic modeling of concrete cracking. Annals Solid Struct Mech 1(2):103–115 Tailhan JL, Rossi P, Phan T, Foulliaron J (2012) Probabilistic modelling of crack creation and propagation in concrete structures: some numerical and mechanical considerations. In: SSCS-2012 Tailhan JL, Rossi P, Phan T, Rastiello G, Foulliaron J (2013) Multiscale probabilistic approaches and strategies for the modelling of concrete. In: FRAMCOS-8 Temam R (2001) Navier-Stokes equations: theory and numerical analysis, vol 343. American Mathematical Society Timoshenko S, Goodier J (1951) Theory of elasticity. McGraw-Hill, New York Ulm F, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31):4295–4311 Wang K, Jansen D, Shah S, Karr A (1997) Permeability study of cracked concrete. Cem Concr Res 27(3):381–393 Zimmerman R, Bodvarsson G (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30