Macroscopic Quantum Resonators (MAQRO): 2015 update
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kaltenbaek R, Hechenblaikner G, Kiesel N, Romero-Isart O, Schwab KC, Johann U, Aspelmeyer M. Macroscopic quantum resonators (MAQRO). Exp Astron. 2012;34(2):123-64. doi: 10.1007/s10686-012-9292-3 .
Kaltenbaek R, Hechenblaikner G, Kiesel N, Blaser F, Gröblacher S, Hofer S, Vanner MR, Wieczorek W, Schwab KC, Johann U, Aspelmeyer M. Macroscopic quantum experiments in space using massive mechanical resonators. Technical report. Study under contract with ESA, Po P5401000400; 2012.
Hechenblaikner G, Hufgard F, Burkhardt J, Kiesel N, Johann U, Aspelmeyer M, Kaltenbaek R. How cold can you get in space? Quantum physics at cryogenic temperatures in space. New J Phys. 2014;16(1):013058. doi: 10.1088/1367-2630/16/1/013058 .
Pilan Zanoni A, Kaltenbaek R, Burkhardt J, Johann U, Hechenblaikner G. Performance of a radiatively cooled system for quantum optomechanical experiments in space. arXiv:1508.01032 (2015).
Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys. 2011;7(7):527-30. doi: 10.1038/nphys1952 .
Gieseler J, Deutsch B, Quidant R, Novotny L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys Rev Lett. 2012;109(10):103603. doi: 10.1103/PhysRevLett.109.103603 .
Kiesel N, Blaser F, Delić U, Grass D, Kaltenbaek R, Aspelmeyer M. Cavity cooling of an optically levitated submicron particle. Proc Natl Acad Sci USA. 2013;110(35):14180-5. doi: 10.1073/pnas.1309167110 .
Millen J, Fonseca PZG, Mavrogordatos T, Monteiro TS, Barker PF. Cavity cooling a single charged levitated nanosphere. Phys Rev Lett. 2015;114:123602. doi: 10.1103/PhysRevLett.114.123602 .
Fonseca PZG, Aranas EB, Millen J, Monteiro TS, Barker PF. Nonlinear dynamics and millikelvin cavity-cooling of levitated nanoparticles, 5. arXiv:1511.08482 (2015).
Schmid P, Sezer U, Horak J, Aspelmeyer M, Andt M, Kaltenbaek R. Trapped nanoparticles for space experiments. Technical report. Study conducted under contract with the European Space Agency, AO/1-6889/11/NL/CBi; 2014.
Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nat Phys. 2013;9(12):806-10. doi: 10.1038/nphys2798 .
Millen J, Deesuwan T, Barker P, Anders J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat Nanotechnol. 2014;9(6):425-9. doi: 10.1038/nnano.2014.82 .
Mestres P, Berthelot J, Spasenović M, Gieseler J, Novotny L, Quidant R. Cooling and manipulation of a levitated nanoparticle with an optical fiber trap. Appl Phys Lett 2015;107:151102. doi: 10.1063/1.4933180 .
O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis JM, Cleland AN. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697-703. doi: 10.1038/nature08967 .
Teufel JD, Donner T, Li D, Harlow JW, Allman MS, Cicak K, Sirois AJ, Whittaker JD, Lehnert KW, Simmonds RW. Sideband cooling of micromechanical motion to the quantum ground state. Nature. 2011;475(7356):359-63. doi: 10.1038/nature10261 .
Chan J, Alegre Mayer TP, Safavi-Naeini AH, Hill JT, Krause A, Gröblacher S, Aspelmeyer M, Painter O. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature. 2011;478(7367):89-92. doi: 10.1038/nature10461 .
Kaltenbaek R, Hechenblaikner G, Schuldt T, Pilan-Zanoni A, Kiesel N, Burkhardt J, Aspelmeyer M, Braxmaier C, Johann U. Design and build of a glued cavity with good optical access for experiments in quantum optomechanics. In preparation; 2016.
Bateman J, Nimmrichter S, Hornberger K, Ulbricht H. Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat Commun. 2014;5:4788. doi: 10.1038/ncomms5788 .
Lin G, Fürst JU, Strekalov DV, Yu N. Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl Phys Lett. 2013;103(18):181107. doi: 10.1063/1.4827538 .
Gebert F, Frosz MH, Weiss T, Wan Y, Ermolov A, Joly NY, Schmidt PO, Russell PSJ. Damage-free single-mode transmission of deep-UV light in hollow-core PCF. Opt Express. 2014;22(13):15388-96. doi: 10.1364/OE.22.015388 .
Bassi A, Ghirardi G. Dynamical reduction models. Phys Rep. 2003;379(5-6):257-426. doi: 10.1016/S0370-1573(03)00103-0 .
Bassi A, Ippoliti E, Adler S. Towards quantum superpositions of a mirror: an exact open systems analysis. Phys Rev Lett. 2005;94(3):030401. doi: 10.1103/PhysRevLett.94.030401 .
Bassi A, Lochan K, Satin S, Singh T, Ulbricht H. Models of wave-function collapse, underlying theories, and experimental tests. Rev Mod Phys. 2013;85(2):471-527. doi: 10.1103/RevModPhys.85.471 .
Ghirardi GC, Rimini A, Weber T. Unified dynamics for microscopic and macroscopic systems. Phys Rev D. 1986;34(2):470-91. doi: 10.1103/PhysRevD.34.470 .
Gisin N. Stochastic quantum dynamics and relativity. Helv Phys Acta. 1989;62:363-71.
Pearle P. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys Rev A. 1989;39(5):2277-89. doi: 10.1103/PhysRevA.39.2277 .
Ghirardi GC, Pearle P, Rimini A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys Rev A. 1990;42(1):78-89. doi: 10.1103/PhysRevA.42.78 .
Diósi L. Gravitation and quantum-mechanical localization of macro-objects. Phys Lett A. 1984;105(4-5):199-202. doi: 10.1016/0375-9601(84)90397-9 .
Penrose R. On gravity’s role in quantum state reduction. Gen Relativ Gravit. 1996;28:581-600. doi: 10.1007/BF02105068 .
Diósi L. Notes on certain Newton gravity mechanisms of wavefunction localization and decoherence. J Phys A, Math Theor. 2007;40(12):2989-95. doi: 10.1088/1751-8113/40/12/S07 .
Jaekel M, Reynaud S. Gravitational quantum limit for length measurements. Phys Lett A. 1994;185(2):143-8. doi: 10.1016/0375-9601(94)90838-9 .
Lamine B, Hervé R, Lambrecht A, Reynaud S. Ultimate decoherence border for matter-wave interferometry. Phys Rev Lett. 2006;96(5):050405. doi: 10.1103/PhysRevLett.96.050405 .
Riedel CJ. Direct detection of classically undetectable dark matter through quantum decoherence. Phys Rev D. 2013;88(11):116005. doi: 10.1103/PhysRevD.88.116005 .
Bateman J, McHardy I, Merle A, Morris TR, Ulbricht H. On the existence of low-mass dark matter and its direct detection. Sci Rep. 2015;5:8058. doi: 10.1038/srep08058 .
Zych M, Costa F, Pikovski I, Brukner Č. Quantum interferometric visibility as a witness of general relativistic proper time. Nat Commun. 2011;2:505. doi: 10.1038/ncomms1498 .
Pikovski I, Zych M, Costa F, Brukner Č. Universal decoherence due to gravitational time dilation. Nat Phys. 2015;11(8):668-72. doi: 10.1038/nphys3366 .
Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, et al., LIGO Scientific Collaboration. Observation of a kilogram-scale oscillator near its quantum ground state. New J Phys. 2009;11(7):073032. doi: 10.1088/1367-2630/11/7/073032 .
Armano M, Benedetti M, Bogenstahl J, Bortoluzzi D, Bosetti P, Brandt N, et al. LISA Pathfinder: the experiment and the route to LISA. Class Quantum Gravity. 2010;26(9):094001. doi: 10.1088/0264-9381/26/9/094001 .
Anza S, Armano M, Balaguer E, Benedetti M, Boatella C, Bosetti P, et al. The LTP experiment on the LISA Pathfinder mission. Class Quantum Gravity. 2005;22(10):S125-S138. doi: 10.1088/0264-9381/22/10/001 .
Lindegren L, Babusiaux C, Bailer-Jones C, Bastian U, Brown AGA, Cropper M, Høg E, Jordi C, Katz D, van Leeuwen F, Luri X, Mignard F, de Bruijne JHJ, Prusti T. The Gaia mission: science, organization and present status. Proc Int Astron Union. 2008;3(S248):217-23. doi: 10.1017/S1743921308019133 .
Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M. The GOCE gravity mission: ESA’s first core Earth explorer. In: Proceedings of 3rd international GOCE user workshop, ESA SP-627. 6-8 Nov., 2006, Frascati, Italy; 2007. p. 1-8.
Marque J-P, Christophe B, Foulon B. In-orbit data of the accelerometers of the ESA GOCE mission. In: 61st international astronautical congress. vol. 6. Prague, CZ; 2010. p. 10-131.
Touboul P, Rodrigues M. The MICROSCOPE space mission. Class Quantum Gravity. 2001;18(13):2487. doi: 10.1088/0264-9381/18/13/311 .
Liorzou F, Boulanger D, Rodrigues M, Touboul P, Selig H. Free fall tests of the accelerometers of the MICROSCOPE mission. Adv Space Res. 2014;54(6):1119-28. doi: 10.1016/j.asr.2014.05.009 .
Sheard BS, Heinzel G, Danzmann K, Shaddock DA, Klipstein WM, Folkner WM. Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod. 2012;86(12):1083-95. doi: 10.1007/s00190-012-0566-3 .
Christophe B, Boulanger D, Foulon B, Huynh P-A, Lebat V, Liorzou F, Perrot E. A new generation of ultra-sensitive electrostatic accelerometers for GRACE follow-on and towards the next generation gravity missions. Acta Astronaut. 2015;117:1-7. doi: 10.1016/j.actaastro.2015.06.021 .
Lightsey PA. James Webb Space Telescope: large deployable cryogenic telescope in space. Opt Eng. 2012;51(1):011003. doi: 10.1117/1.OE.51.1.011003 .
Davisson C, Germer LH. The scattering of electrons by a single crystal of nickel. Nature. 1927;119:558-60.
Eibenberger S, Gerlich S, Arndt M, Mayor M, Tüxen J. Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. PCCP, Phys Chem Chem Phys. 2013;15(35):14696-700. doi: 10.1039/c3cp51500a .
Adler SL, Bassi A. Physics. Is quantum theory exact?. Science. 2009;325(5938):275-6. doi: 10.1126/science.1176858 .
Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys. 2014;86(4):1391-452. doi: 10.1103/RevModPhys.86.1391 .
Collett B, Pearle P. Wavefunction collapse and random walk. Found Phys. 2003;33(10):1495-541. doi: 10.1023/A:1026048530567 .
Bahrami M, Paternostro M, Bassi A, Ulbricht H. Proposal for a noninterferometric test of collapse models in optomechanical systems. Phys Rev Lett. 2014;112(21):210404. doi: 10.1103/PhysRevLett.112.210404 .
Kaltenbaek R, Aspelmeyer M. Optomechanical Schrödinger cats - a case for space. In: Reiter WL, Yngvason J, editors. Erwin Schrödinger - 50 years after. Vienna: Eur. Math. Soc.; 2013. p. 123-32. doi: 10.4171/121-1/6 .
Bera S, Motwani B, Singh TP, Ulbricht H. A proposal for the experimental detection of CSL induced random walk. Sci Rep. 2015;5:7664. doi: 10.1038/srep07664 .
Zurek WH. Decoherence and the transition from quantum to classical. Phys Today. 1991;44(10):36. doi: 10.1063/1.881293 .
Schlosshauer MA. Decoherence and the quantum-to-classical transition. Berlin: Springer; 2007. doi: 10.1007/978-3-540-35775-9 .
D’Ariano G, Yuen H. Impossibility of measuring the wave function of a single quantum system. Phys Rev Lett. 1996;76(16):2832-5. doi: 10.1103/PhysRevLett.76.2832 .
Ellis J. Search for violations of quantum mechanics. Nucl Phys B. 1984;241(2):381-405. doi: 10.1016/0550-3213(84)90053-1 .
Ellis J, Mohanty S, Nanopoulos DV. Quantum gravity and the collapse of the wavefunction. Phys Lett B. 1989;221(2):113-9. doi: 10.1016/0370-2693(89)91482-2 .
Adler SL. Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J Phys A, Math Theor. 2007;40(12):2935-57. doi: 10.1088/1751-8113/40/12/S03 .
Hornberger K, Gerlich S, Haslinger P, Nimmrichter S, Arndt M. Colloquium: quantum interference of clusters and molecules. Rev Mod Phys. 2012;84(1):157-73. doi: 10.1103/RevModPhys.84.157 .
Brezger B, Arndt M, Zeilinger A. Concepts for near-field interferometers with large molecules. J Opt B, Quantum Semiclass Opt. 2003;5(2):S82-S89. doi: 10.1088/1464-4266/5/2/362 .
Haslinger P, Dörre N, Geyer P, Rodewald J, Nimmrichter S, Arndt M. A universal matter-wave interferometer with optical ionization gratings in the time domain. Nat Phys. 2013;9(3):144-8. doi: 10.1038/nphys2542 .
Hornberger K, Gerlich S, Ulbricht H, Hackermüller L, Nimmrichter S, Goldt IV, Boltalina O, Arndt M. Theory and experimental verification of Kapitza-Dirac-Talbot-Lau interferometry. New J Phys. 2009;11(4):043032. doi: 10.1088/1367-2630/11/4/043032 .
Chang DE, Regal CA, Papp SB, Wilson DJ, Ye J, Painter O, Kimble HJ, Zoller P. Cavity opto-mechanics using an optically levitated nanosphere. Proc Natl Acad Sci USA. 2010;107:1005-10. doi: 10.1073/pnas.0912969107 .
Romero-Isart O, Juan ML, Quidant R, Cirac JI. Toward quantum superposition of living organisms. New J Phys. 2010;12:33015. doi: 10.1088/1367-2630/12/3/033015 .
Nimmrichter S. Macroscopic matter wave interferometry. Switzerland: Springer; 2014. doi: 10.1007/978-3-319-07097-1 .
Kaltenbaek R. Testing quantum physics in space using optically trapped nanospheres. Proc SPIE. 2013;8810:88100B. doi: 10.1117/12.2027051 .
Leger A. DARWIN mission proposal to ESA. arXiv:0707.3385 (2007).
Loose M, Beletic J, Garnett J, Muradian N. Space qualification and performance results of the SIDECAR ASIC. In: Mather JC, MacEwen HA, de Graauw MWM, editors. SPIE astronomical telescopes and instrumentation I. vol. 6265. Orlando: International Society for Optics and Photonics; 2006. 62652J. doi: 10.1117/12.672705 .
Bai Y, Bajaj J, Beletic JW, Farris MC, Joshi A, Lauxtermann S, Petersen A, Williams G. Teledyne imaging sensors: silicon CMOS imaging technologies for X-ray, UV, visible, and near infrared. In: High energy, optical, and infrared detectors for astronomy III. Proceedings of SPIE. vol. 7021; 2008. 702102. doi: 10.1117/12.792316 .
Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse PWH, Murr K, Rempe G. Photon-by-photon feedback control of a single-atom trajectory. Nature. 2009;462(7275):898-901. doi: 10.1038/nature08563 .
Yin Z, Li T, Feng M. Three-dimensional cooling and detection of a nanosphere with a single cavity. Phys Rev A. 2011;83(1):013816. doi: 10.1103/PhysRevA.83.013816 .
Lafargue L, Rodrigues M, Touboul P. Towards low-temperature electrostatic accelerometry. Rev Sci Instrum. 2002;73(1):196. doi: 10.1063/1.1416103 .
Tröbs M, Weßels P, Fallnich C, Bode M, Freitag I, Skorupka S, Heinzel G, Danzmann K. Laser development for LISA. Class Quantum Gravity. 2006;23(8):S151-S158. doi: 10.1088/0264-9381/23/8/S20 .
Hildebrandt L, Knispel R, Stry S, Sacher JR, Schael F. Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy. Appl Opt. 2003;42(12):2110. doi: 10.1364/AO.42.002110 .
Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S. Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions. Appl Phys B. 2011;103(1):27-33. doi: 10.1007/s00340-011-4435-1 .
Pound RV. Electronic frequency stabilization of microwave oscillators. Rev Sci Instrum. 1946;17(11):490. doi: 10.1063/1.1770414 .
Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H. Laser phase and frequency stabilization using an optical resonator. Appl Phys B. 1983;31(2):97-105. doi: 10.1007/BF00702605 .
Benabid F, Knight J, Russell P. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt Express. 2002;10(21):1195. doi: 10.1364/OE.10.001195 .
Schmidt OA, Euser TG, Russell PSJ. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber. Opt Express. 2013;21(24):29383-91. doi: 10.1364/OE.21.029383 .
Grass D. Optical trapping and transport of nanoparticles with hollow core photonic crystal fibers. Masters thesis. University of Vienna; 2013. http://othes.univie.ac.at/28929/ .
Lenoir B, Lévy A, Foulon B, Lamine B, Christophe B, Reynaud S. Electrostatic accelerometer with bias rejection for gravitation and Solar System physics. Adv Space Res. 2011;48(7):1248-57. doi: 10.1016/j.asr.2011.06.005 .
Biermann L. Solar corpuscular radiation and the interplanetary gas. Observatory. 1957;77:109-10.