Macroscopic Limits and Phase Transition in a System of Self-propelled Particles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112, 135–153 (2003)
Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 48, 1081–1088 (1982)
Bailey, P.B., Everitt, W.N., Zettl, A.: Computing eigenvalues of singular Sturm–Liouville problems. Results Math. 20, 391–423 (1991)
Bolley, F., Cañizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25, 339–343 (2012)
Carrillo, J.A., D’Orsogna, M.R., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2, 363–378 (2009)
Carrillo, J.A., Klar, A., Martin, S., Tiwari, S.: Self-propelled interacting particle systems with roosting force. Math. Models Methods Appl. Sci. 20, 1533–1552 (2010)
Chuang, Y.-L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D 232, 33–47 (2007)
Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)
Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology, pp. 3–57. Birkhäuser, Basel (2004)
Degond, P., Frouvelle, A., Liu, J.-G.: Phase transitions, hysteresis and hyperbolicity for self-organized alignment dynamics (2012, in preparation)
Degond, P., Liu, J.-G., Motsch, S., Panferov, V.: Hydrodynamic models of self-organized dynamics: derivation and existence theory (2011, submitted)
Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008a)
Degond, P., Motsch, S.: Large scale dynamics of the persistent turning walker model. J. Stat. Phys. 131, 989–1021 (2008b)
Degond, P., Motsch, S.: A macroscopic model for a system of swarming agents using curvature control. J. Stat. Phys. 143, 685–714 (2011)
Degond, P., Yang, T.: Diffusion in a continuum model of self-propelled particles with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)
Doi, M., Edwards, S.F.: the Theory of Polymer Dynamics. International Series of Monographs on Physics. Oxford University Press, London (1999)
D’Orsogna, M.R., Chuang, Y.-L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302 (2006)
Frouvelle, A.: A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters. Math. Mod. Meth. Appl. Sci. 22, 1250011 (2012)
Frouvelle, A., Liu, J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791–826 (2012)
Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)
Hsu, E.P.: Stochastic Analysis on Manifolds. Graduate Series in Mathematics. Am. Math. Soc., Providence (2002)
Kulinskii, V.L., Ratushnaya, V.I., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints. Europhys. Lett. 71, 207 (2005)
Maier, W., Saupe, A.: Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes. Z. Naturforsch. 13, 564–566 (1958)
Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)
Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)
Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad. Sci. 51, 627–659 (1949)
Pego, R.L., Serre, D.: Instabilities in Glimm’s scheme for two systems of mixed type. SIAM J. Numer. Anal. 25, 965–988 (1988)
Ratushnaya, V.I., Bedeaux, D., Kulinskii, V.L., Zvelindovsky, A.V.: Collective behavior of self-propelling particles with kinematic constraints: the relation between the discrete and the continuous description. Physica A 381, 39–46 (2007)
Ratushnaya, V.I., Kulinskii, V.L., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions. Physica A 366, 107–114 (2006)
Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)
Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)
Topaz, C.M., Bertozzi, A.L., Lewis, M.E.: A nonlocal continuum model for biological aggregations. Bull. Math. Biol. 68, 1601–1623 (2006)
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)
Watson, G.S.: Distributions on the circle and sphere. J. Appl. Probab. 19, 265–280 (1982). Essays in Statistical Science