Macrophages enhance mesenchymal stem cell osteogenesis via down-regulation of reactive oxygen species
Tóm tắt
Từ khóa
Tài liệu tham khảo
Calori, 2011, The use of bone-graft substitutes in large bone defects: any specific needs?, Injury, 42, S56, 10.1016/j.injury.2011.06.011
Sui, 2019, Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions, Biomaterials, 196, 18, 10.1016/j.biomaterials.2017.10.046
Roddy, 2018, Treatment of critical-sized bone defects: clinical and tissue engineering perspectives, Eur. J. Orthop. Surg. Traumatol., 28, 351, 10.1007/s00590-017-2063-0
Wang, 2017, Bone grafts and biomaterials substitutes for bone defect repair: a review, Bioact. Mater., 2, 224, 10.1016/j.bioactmat.2017.05.007
Bose, 2012, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol., 30, 546, 10.1016/j.tibtech.2012.07.005
Madl, 2018, Bioengineering strategies to accelerate stem cell therapeutics, Nature, 557, 335, 10.1038/s41586-018-0089-z
Parekkadan, 2010, Mesenchymal stem cells as therapeutics, Annu. Rev. Biomed. Eng., 12, 87, 10.1146/annurev-bioeng-070909-105309
Chen, 2012, Stem cell-delivery therapeutics for periodontal tissue regeneration, Biomaterials, 33, 6320, 10.1016/j.biomaterials.2012.05.048
Murray, 2011, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol., 11, 723, 10.1038/nri3073
Mosser, 2008, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol., 8, 958, 10.1038/nri2448
Murray, 2014, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, 41, 14, 10.1016/j.immuni.2014.06.008
Pajarinen, 2019, Mesenchymal stem cell-macrophage crosstalk and bone healing, Biomaterials, 196, 80, 10.1016/j.biomaterials.2017.12.025
Spiller, 2017, Macrophage-based therapeutic strategies in regenerative medicine, Adv. Drug Deliv. Rev., 122, 74, 10.1016/j.addr.2017.05.010
Das, 2015, Monocyte and macrophage plasticity in tissue repair and regeneration, Am. J. Pathol., 185, 2596, 10.1016/j.ajpath.2015.06.001
Smith, 2017, Harnessing macrophage plasticity for tissue regeneration, Adv. Drug Deliv. Rev., 114, 193, 10.1016/j.addr.2017.04.012
He, 2018, The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells, J. Cell. Mol. Med., 22, 1302, 10.1111/jcmm.13431
Vi, 2015, Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis, J. Bone Miner. Res., 30, 1090, 10.1002/jbmr.2422
Champagne, 2002, Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2, Bone, 30, 26, 10.1016/S8756-3282(01)00638-X
Pirraco, 2013, Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs, J. Tissue Eng. Regen. Med., 7, 392, 10.1002/term.535
Chang, 2008, Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo, J. Immunol., 181, 1232, 10.4049/jimmunol.181.2.1232
Nicolaidou, 2012, Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation, PLoS One, 7, 10.1371/journal.pone.0039871
Sun, 2017, Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration, Biomaterials, 113, 203, 10.1016/j.biomaterials.2016.10.050
Liu, 2018, In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats, Int. J. Mol. Med., 41, 669
Hermiston, 2003, CD45: a critical regulator of signaling thresholds in immune cells, Annu. Rev. Immunol., 21, 107, 10.1146/annurev.immunol.21.120601.140946
Wu, 2018, Biomaterials for endogenous regenerative medicine: coaxing stem cell homing and beyond, Appl. Mater. Today, 11, 144, 10.1016/j.apmt.2018.02.004
Yin, 2017, Influences of age-related changes in mesenchymal stem cells on macrophages during in-vitro culture, Stem Cell Res. Ther., 8, 153, 10.1186/s13287-017-0608-0
Yeler, 2005, Investigation of oxidative stress during fracture healing in the rats, Cell Biochem. Funct., 23, 137, 10.1002/cbf.1199
Schäfer, 2008, Oxidative stress in normal and impaired wound repair, Pharmacol. Res., 58, 165, 10.1016/j.phrs.2008.06.004
Ishii, 2014, Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance, Redox Biol., 2, 786, 10.1016/j.redox.2014.04.008
Bigarella, 2014, Stem cells and the impact of ROS signaling, Development, 141, 4206, 10.1242/dev.107086
Mouthuy, 2016, Biocompatibility of implantable materials: an oxidative stress viewpoint, Biomaterials, 109, 55, 10.1016/j.biomaterials.2016.09.010
Urao, 2013, Redox regulation of stem/progenitor cells and bone marrow niche, Free Radic. Biol. Med., 54, 26, 10.1016/j.freeradbiomed.2012.10.532
Phinney, 2015, Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs, Nat. Commun., 6, 8472, 10.1038/ncomms9472
Jun, 2019, Ceria-incorporated MTA for accelerating odontoblastic differentiation via ROS downregulation, Dent. Mater., 35, 1291, 10.1016/j.dental.2019.05.024
Yamada, 2013, N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration, Biomaterials, 34, 6147, 10.1016/j.biomaterials.2013.04.064
Li, 2019, M2 macrophages enhance the cementoblastic differentiation of periodontal ligament stem cells via the Akt and JNK pathways, Stem Cells, 37, 1567, 10.1002/stem.3076
Goren, 2009, Akt1 controls insulin-driven VEGF biosynthesis from keratinocytes: implications for normal and diabetes-impaired skin repair in mice, J. Invest. Dermatol., 129, 752, 10.1038/jid.2008.230
Zhang, 2016, Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway, Stem Cell Res. Ther., 7, 136, 10.1186/s13287-016-0391-3
Wu, 2018, Enhanced osteogenic differentiation and bone regeneration of poly(lactic-: Co -glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit, Biomater. Sci., 6, 1147, 10.1039/C8BM00127H
Wu, 2017, Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway, Nat. Commun., 8, 13700, 10.1038/ncomms13700
Xu, 2009, High glucose suppresses epidermal growth factor receptor/ phosphatidylinositol 3-kinase/akt signaling pathway and attenuates corneal epithelial wound healing, Diabetes, 58, 1077, 10.2337/db08-0997
Németh, 2009, Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production, Nat. Med., 15, 42, 10.1038/nm.1905