Macrofaunal Distribution, Diversity, and Its Ecological Interaction at the Cold Seep Site of Krishna-Godavari Basin, East Coast of India
Tóm tắt
Từ khóa
Tài liệu tham khảo
Reed AJ, Lutz RA, Vetriani C (2006) Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10 3 199 211 101007/s00792–005–0488–6
BB Jørgensen Boetius 2007 Feast and famine—microbial life in the deep-sea bed Nat Rev Microbiol 5 770 781 https://doi.org/10.1038/nrmicro1745
Baco AR, Rowden AA, Levin LA, Smith CR, Bowden DA (2010) Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Mar Geol 272:251–259. https://doi.org/10.1016/j.margeo.2009.06.015
Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In: Gibson R (ed) Oceanography and marine biology: an annual review, 43 Vol. Taylor & Francis, New York, pp 1–46
Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res Part II 45:517–567. https://doi.org/10.1016/S0967-0645(97)00074-X
Sen A, Åström EK, Hong WL, Portnov A, Waage M, Serov P, Carroll J (2018) Geophysical and geochemical controls on the megafaunal community of a high Arctic cold seep. Biogeosciences 15:4533–4559. https://doi.org/10.5194/bg-15-4533-2018
Dando PR (2010) Biological communities at marine shallow-water vent and seep sites. In: Steffen K (ed) The vent and seep biota, 1st edn. Springer, Netherlands, pp 333–378
Sahling H, Galkin SV, Salyuk A, Greinert J, Foerstel H, Piepenburg D, Suess E (2003) Depth-related structure and ecological significance of cold-seep communities—a case study from the Sea of Okhotsk. Deep-Sea Res PT I 50:1391–1409. https://doi.org/10.1016/j.dsr.2003.08.004
Giongo A, Haag T, Simão TLL, Medina-Silva R, Utz LR, Bogo MR, Rodrigues LF (2016) Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep-Sea Res PT I 112:45–56. https://doi.org/10.1016/j.dsr.2015.10.010
Barry JP, Buck KR, Goffredi SK, Hashimoto J (2000) Ultrastructure studies of two chemosynthetic invertebrate-bacterial symbiosis (Lamellibrachia sp. and Acharax sp.) from Hatsushima cold seeps in Sagami Bay. Japan Deep-Sea Res PT II 16:91–99
Nunoura T, Inagaki F, Delwiche ME, ColwellFS Takai K (2008) Subseafloor microbial communities in methane hydrate-bearing sediment at two distinct locations (ODP Leg204) in the Cascadia Margin. Microbes Environ. https://doi.org/10.1264/jsme2.ME08514
Sibuet M, Vangriesheim A (2009) Deep-sea environment and biodiversity of the West African Equatorial margin. Deep-Sea Res PT II 56:2156–2168. https://doi.org/10.1016/j.dsr2.2009.04.015
Mazumdar A, Dewangan P, Peketi A, Gullapalli S, Kalpana MS, Naik GP, Shetty D, Pujari S, Pillutla SPK, Gaikwad VV, Nazareth D, Sangodkar NS, Dakara G, Kumar A, Mishra CK, Singha P, Reddy R (2019) The first record of active methane (cold) seep ecosystem associated with shallow methane hydrate from the Indian EEZ. J Earth Syst Sci 128:18. https://doi.org/10.1007/s12040-018-1044-y
Mazumdar A, Dewangan P, Peketi A, Badesaab F, Sadique M, Sivan K, Paul T (2021) The first record of the genus Lamellibrachia (Siboglinidae) tubeworm along with associated organisms in a chemosynthetic ecosystem from the Indian Ocean: a report from the Cauvery-Mannar Basin. J Earth Syst Sci 130:1–10. https://doi.org/10.1007/s12040-021-01587-1
Fischer D, Sahling H, Nöthen K, Bohrmann G, Zabel M, Kasten, S (2012) Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences. 9:2013-2031. 10.5194/bg-9-2013-2012
Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production of East Pacific seafloor spreading centers. Bioscience 29:592–598. https://doi.org/10.2307/1307765
Cavanaugh CM (1985) Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol Soc Wash Bull 6:73–388
Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr Mar Biol 30:337–441
Tunnicliffe V (1992) Hydrothermal-vent communities of the deep sea. Am Sci 80:336–349
Tunnicliffe V, Juniper SK., Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosystems of the deep oceans. Ecosystems of the World, 1st edn. Elsevier Science, The Netherlands, pp 81–110
Imhoff JF, Sahling H, Suling J, Kath T (2003) 16S rDNA-based phylogeny of sulfur oxidizing bacterial endosymbionts in marine bivalves from cold-seeps environments. Mar Ecol Prog Ser 249:39–51. https://doi.org/10.3354/meps249039
Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264:1–14. https://doi.org/10.3354/meps264001
Hilário A, Capa M, Dahlgren TG, Halanych KM, Little CTS, Thornhill DJ, Verna C, Glover AG (2011) New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE 6(2):e16309. https://doi.org/10.1371/journal.pone.0016309
Olu K, Lance S, Sibuet M, Henry P, Fiala-Médioni A, Dinet A (1997) Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. Deep-Sea Res PT I 44:811–841. https://doi.org/10.1016/S0967-0637(96)00123-9
Portnova D, Mokievsky V, Soltwedel T (2011) Nematode species distribution patterns at the Håkon Mosby mud volcano (Norwegian Sea). Mar Ecol 32:24–41. https://doi.org/10.1111/j.1439-0485.2010.00403.x
Hassanpouryouzband A, Joonaki E, Farahani MV, Takeya S, Ruppel C, Yang J, Tohidi B (2020) Gas hydrates in sustainable chemistry. Chem Soc Rev 49:5225–5309. https://doi.org/10.1039/C8CS00989A
Rao GN (2001) Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari basin. East Coast India AAPG Bull 85(9):1623–1643. https://doi.org/10.1306/8626CCDF-173B-11D7-8645000102C1865D
Bastia R (2007) Geologic settings and petroleum systems of India’s east coast offshore basins: concepts & applications. Technology Publications, Eastern Book Corporation, Dheradhun
Ramana MV, Ramprasad T, Kamesh Raju KA, Desa M (2007) Occurrence of gas hydrates along the continental margins of India, particularly the Krishna-Godavari offshore basin. Int J Environ Sci 64:75–693. https://doi.org/10.1080/00207230701476321
Sain K, Gupta HK (2008) Gas hydrates: Indian scenario. J Geol Soc India 72:299–311
Collett TS, Riedel M, Cochran JR, Boswell R, Presley J, Kumar P, Sibal V (2008) National Gas Hydrate Program (NGHP) Expedition 01 Initial Reports. Directorate General of Hydrocarbons, New Delhi.
Mazumdar A, Dewangan P, Joao HM, Peketi A, Khosla VR, Kocherla M, Badesab FK, Joshi RK, Roxanne P, Ramamurty PB, Karisiddaiah SM (2009) Evidence of paleo–cold seep activity from the Bay of Bengal, offshore India. Geochem. Geophys. https://doi.org/10.1029/2008GC002337
Cordes EE, Becker EL, Hourdez S, Fisher CR (2010) Influence of foundation species, depth and location on diversity and community composition at Gulf of Mexico lower-slope cold seeps. Deep-Sea Res PT II 57:1870–1881. https://doi.org/10.1016/j.dsr2.2010.05.010
Levin LA, Baco AR, Bowden DA, Colaco A, Cordes EE, Cunha MR, Metaxas A (2016) Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front Mar Sci 3:72. https://doi.org/10.3389/fmars.2016.00072
Gonsalves MB, Fernandes CEG, Fernandes SO, LokaBharathi PA (2011) Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea. Environ Monit Assess 182:385–395. https://doi.org/10.1007/s10661-011-1883-3
Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458. https://doi.org/10.4319/lo.1969.14.3.0454
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA and JS Craigie (eds) Handbook of phycological methods, Phycological and biochemical methods, 2nd edn. Cambridge University Press, New York, pp 95.
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
Danovaro R, Fabiano M, Della Croce N (1993) Labile organic matter and microbial biomasses in deep-sea sediments (Eastern Mediterranean Sea). Deep-Sea Res PT I 40:953–965. https://doi.org/10.1016/0967-0637(93)90083-F
Fichez R (1991) Suspended particulate organic matter in a Mediterranean submarine cave. Mar Biol 108:167–174. https://doi.org/10.1007/BF01313485
Fabiano M, Danovaro R (1994) Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiologia 277:71–84. https://doi.org/10.1007/BF00016755
El Wakeel SK, Riley JP (1957) The determination of organic carbon in marine muds. ICES J Mar Sci 22:180–183
Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
Whittenbury R, Colby J, Dalton H, Reed HL (1976) Biology and ecology of methane oxidizers. In: Gottochalk G, Schlelegel HG, Pfennig N (eds) Symposium on microbial production and utilization of gases, 1st edn. Gottingen, Germany, pp 281–292
Whittenbury R, Phillip KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane utilizing bacteria. J Gen Microbiol 61:205–218
Rodina AG (1972) Methods in studying microorganisms of the nitrogen cycle. In: Colwell RR, Zambruski MS (eds) Methods in aquatic microbiology, 1st edn. University Park Press, Baltimore, pp 251–322
LokaBharathi PA, Nair S, Chandramohan D (1997) Anaerobic sulphide-oxidation in marine colorless sulfur-oxidizing bacteria. J Mar Biotechnol 5:172–177
Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW (2012) Scanning electron microscopy. Curr Protoc Microbiol. Chapter 2: Unit 2B.2. https://doi.org/10.1002/9780471729259.mc02b02s25
Feng D, Qiu JW, Hu Y, Peckmann J, Guan H, Tong H, Chen D (2018) Cold seep systems in the South China Sea: an overview. J Asian Earth Sci 168:3–16. https://doi.org/10.1016/j.jseaes.2018.09.021
Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138. https://doi.org/10.3354/meps231121
Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi SWA, Zhang J (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2063–2098. https://doi.org/10.5194/bg-6-2063-2009
Ritt B, Pierre C, Gauthier O, Wenzhöfer F, Boetius A, Sarrazin J (2011) Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan. Mar Biol 158:1187–1210. https://doi.org/10.1007/s00227-011-1679-6
Guillon E, Menot L, Decker C, Krylova E, Olu K (2017) The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages. Deep-Sea Res PT I 120:1–13. https://doi.org/10.1016/j.dsr.2016.12.008
Menot L, Galéron J, Olu K, Caprais JC, Crassous P, Khripounoff A, Sibuet M (2010) Spatial heterogeneity of macrofaunal communities in and near a giant pockmark area in the deep Gulf of Guinea. Mar Ecol 31:78–93. https://doi.org/10.1111/j.1439-0485.2009.00340.x
Cordes EE, Carney SL, Hourdez S, Carney RS, Brooks JM, Fisher CR (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep-Sea Res PT I 54:637–653. https://doi.org/10.1016/j.dsr.2007.01.001
Levin LA, Mendoza GF, Gonzalez JP, Thurber AR, Cordes EE (2010) Diversity of bathyal macrofauna on the northeastern Pacific margin: the influence of methane seeps and oxygen minimum zones. Mar Ecol 31(1):94–110. https://doi.org/10.1111/j.1439-0485.2009.00335.x
Galeron J, Menot L, Renaud N, Crassous P, Khripounoff A, Treignier C, Sibuet M (2009) Spatial and temporal patterns of benthic macrofaunal communities on the deep continental margin in the Gulf of Guinea. Deep-Sea Res Pt II 56(23):2299–2312. https://doi.org/10.1016/j.dsr2.2009.04.011
Decker C, Morineaux M, Van Gaever S, Caprais JC, Lichtschlag A, Gauthier O, Olu K (2012) Habitat heterogeneity influences cold‐seep macrofaunal communities within and among seeps along the Norwegian margin. Part 1: macrofaunal community structure. Mar Ecol. 33(2):205–230. https://doi.org/10.1111/j.1439-0485.2011.00503.x
Cunha MR, Rodrigues CF, Génio L, Hilário A, Ravara A, Pfannkuche O (2012) Macrofaunal assemblages from mud volcanoes in the Gulf of Cadiz: abundance, biodiversity and diversity partitioning across spatial scales. Biogeosci. Discuss. 9(12). 10.5194/bg-10-2553-2013
Olu K, Decker C, Pastor L, Caprais JC, Khripounoff A, Morineaux M, Rabouille C (2017) Cold-seep-like macrofaunal communities in organic-and sulfide-rich sediments of the Congo deep-sea fan. Deep Sea Res Part II 142:180–196. https://doi.org/10.1016/j.dsr2.2017.05.005
Åström EK, Carroll ML, Ambrose WG Jr, Sen A, Silyakova A, Carroll J (2018) Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol Oceanogr 63:S209–S231. https://doi.org/10.1002/lno.10732
Jayaraj KA, Jayalakshmi KV, Saraladevi K (2007) Influence of environmental properties on macrobenthos in the northwest Indian shelf. Environ Monit Assess 127:459–475. https://doi.org/10.1007/s10661-006-9295-5
Musale AS, Desai DV (2011) Distribution and abundance of macrobenthic polychaetes along the South Indian coast. Enviro.n Monit. Assess 178:423–436. https://doi.org/10.1007/s10661-010-1701-3
Harkantra SN, Parulekar AH (1985) Community structure of sand-dwelling macrofauna of an estuarine beach in Goa. India Mar Ecol Prog Ser 30:291–294
Govenar B, Fisher CR (2007) Experimental evidence of habitat provision by the siboglinid polychaete Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Mar Ecol 28:3–14. https://doi.org/10.1111/j.1439-0485.2007.00148.x
Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, Dubilier N (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447. https://doi.org/10.1111/j.1462-2920.2006.01038.x
Fiala-Médioni A, McKiness Z, Dando P, Boulegue J, Mariotti AAAD, Alayse-Danet A, Cavanaugh C (2002) Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the mid-Atlantic ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043. https://doi.org/10.1007/s00227-002-0903-9
Riou V, Duperron S, Halary S, Dehairs F, Bouillon S, Martins I, Santos RS (2010) Variation in physiological indicators in Bathymodiolus azoricus (Bivalvia: Mytilidae) at the Menez Gwen Mid-Atlantic Ridge deep-sea hydrothermal vent site within a year. Mar Environ Res 70:264–271. https://doi.org/10.1016/j.marenvres.2010.05.008
Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Annu Rev Mar Sci 1:143–168. https://doi.org/10.1146/annurev.marine.010908.163912
Fisher CR, Urcuyo IA, Simpkins MA, Nix E (1997) Life in the slow lane: growth and longevity of cold-seep vestimentiferans. Mar Ecol 8:83–94. https://doi.org/10.1111/j.1439-0485.1997.tb00428.x
Stakes DS, Orange D, Paduan JB, Salamy KA, Maher N (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay. California Mar Geol 159:93–109. https://doi.org/10.1016/S0025-3227(98)00200-X
Trombetta T, Vidussi F, Roques C, Scotti M, Mostajir B (2020) Marine microbial food web networks during phytoplankton bloom and non-bloom periods: warming favors smaller organism interactions and intensifies trophic cascade Front. Microbiol 11. https://doi.org/10.3389/fmicb.2020.502336
Behera BC, Patra M, Dutta SK, Thatoi HN (2014) Isolation and characterization of sulphur oxidizing bacteria from mangrove soil of Mahanadi river delta and their sulphur oxidizing ability. J Appl Environ Microbiol 2:1–5
Halary S, Riou V, Gaill F, Boudier T, Duperron S (2008) 3D FISH for the quantification of methane- and sulphur-oxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2:284–292. https://doi.org/10.1038/ismej.2008.3
Le Bris N, Duperron S (2010) Chemosynthetic communities and biogeochemical energy pathways along the Mid-Atlantic Ridge: the case of Bathymodiolus azoricus. Geophys Monogr Ser 188:409–429. https://doi.org/10.1029/2008GM000712
Kádár E, Bettencourt R, Costa V, Santos RS, Lobo-da-Cunha A, Dando P (2005) Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. J Exp Mar Biol Ecol 318:99–110. https://doi.org/10.1016/j.jembe.2004.12.025
Heijs SK, Aloisi G, Bouloubassi I, Pancost RD, Pierre C, Damsté JS, Forney LJ (2006) Microbial community structure in three deep-sea carbonate crusts. Microb Ecol 52(3):451–462. https://doi.org/10.1007/s00248-006-9099-8
Chen DF, Huang YY, Yuan XL, Cathles LM III (2005) Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea. Mar pet Geol 22:613–621. https://doi.org/10.1016/J.MARPETGEO.2005.05.002
Su X, Chen F, Lu HF, Huang YY (2008) Micro-textures of methane seep carbonates from the northern South China Sea in correlation with fluid flow. Geosci 22:376–381
Teichert BMA, Johnson JE, Solomon EA, Giosan L, Rose K, Kocherla M, Torres ME (2014) Composition and origin of authigenic carbonates in the Krishna-Godavari and Mahanadi Basins, eastern continental margin of India. Mar Pet Geol 58:438–460
Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities, Earth Planet. Sci Lett 221:337–353. https://doi.org/10.1016/S0012-821X(04)00107-4
Bowden DA, Rowden AA, Thurber AR, Baco AR, Levin LA, Smith CR (2013) Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: composition, succession, and vulnerability to human activities. PLoS ONE. https://doi.org/10.1371/journal.pone.0076869
Pierre C, Fouquet Y (2007) Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo Mar Lett 27:249–257. https://doi.org/10.1007/s00367-007-0081-3
Åström EK, Carroll ML, Ambrose WG Jr, Carroll J (2016) Arctic cold seeps in marine methane hydrate environments: impacts on shelf macrobenthic community structure offshore Svalbard. Mar Ecol Prog Ser 552:1–18. https://doi.org/10.3354/meps11773
Niemann H, Linke P, Knittel K, MacPherson E, Boetius A, Brückmann W, Rehder G (2013) Methane-carbon flow into the benthic food web at cold seeps—a case study from the Costa Rica subduction zone. PLoS ONE 8(10):e74894. https://doi.org/10.1371/journal.pone.0074894
Kellogg, CA (2010) Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 57:2002–2007. https://doi:https://doi.org/10.1016/j.dsr2.2010.05.006
D’Hondt SL, Jørgensen BB, Miller DJ (2003) Shipboard Scientific Party. Proc. ODP, Init. Repts. 201, College Station TX (Ocean Drilling Program):1–81. https://doi:https://doi.org/10.2973/odp.proc.ir.201.101.2003
Zhang Y, Su X, Chen F, Wang Y, Jiao L, Dong H, Jiang H (2012) Microbial diversity in cold seep sediments from the northern South China Sea. Geosci Front 3:301–316. https://doi.org/10.1016/j.gsf.2011.11.014
Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J. 20:269–294. https://doi:https://doi.org/10.1080/01490450303896
Ritt B, Sarrazin J, Caprais J, Noel P, Gauthier O (2010) First insights into the structure and environmental setting of cold-seep communities in the Marmara Sea. Deep-Sea Res I 57:1120–1136. https://doi.org/10.1016/j.dsr.2010.05.011
A Hilário M Capa TG Dahlgren KM Halanych CTS Little DJ Thornhill C Verna AG Glover 2011 New perspectives on the ecology and evolution of siboglinid tubeworms PLoS ONE https://doi.org/10.1371/journal.pone.0016309
Neulinger SC, Sahling H, Süling J, Imhoff JF (2006) Presence of two phylogenetically distinct groups in the deep-sea mussel Acharax (Mollusca: Bivalvia: Solemyidae). Mar Ecol Prog Ser 312:161–168. https://doi.org/10.3354/meps312161
Ravara A, Cunha MR, Rodrigues CF (2007) The occurrence of Natsushima bifurcata (Polychaeta: Nautiliniellidae) in Acharax hosts from mud volcanoes in the Gulf of Cadiz (south Iberian and north Moroccan Margins). Sci Mar 71:95–100. https://doi.org/10.3989/SCIMAR.2007.71N195
Martin JW, Haney TA (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zool J Linn Soc 145(4):445–522. https://doi.org/10.1111/j.1096-3642.2005.00178.x
Pūtaiao PA (2012) Cold seep communities. Science Learning Hub. www.sciencelearn.org.nz/resources/475-cold-seep-communities. Accessed 01 July 2019