Macrocarquinoids A–C, new meroterpenoids from Sargassum macrocarpum

Hiromi Niwa1, Shin‐ichiro Kurimoto2, Takaaki Kubota2, Mitsuhiro Sekiguchi1
1Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
2Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: review. Diabetologia 44:129–146

Polsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, Skibted LH, Dragsted LO (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60:10–37

Takeuchi M, Makita Z (2001) Alternative routes for the formation of immunochemically distinct advanced glycation end-products in vivo. Curr Mol Med 3:305–315

Takeuchi M, Yamagishi S (2004) Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses 63:453–455

Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1–5

Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s diseases. Brain Res Rev 23:134–143

Kumar Pasupulati A, Chitra PS, Reddy GB (2016) Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 7:293–309

Bellier J, Nokin MJ, Lardé E, Karoyan P, Peulen O, Castronovo J, Bellahcéne A (2019) Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract 148:200–211

Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 293:973–978

Okamoto T, Yamagishi S, Inagaki Y, Amano S, Koga K, Abe R, Takeuchi M, Ohno S, Yoshimura A, Makita Z (2002) Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 16:1928–1930

Abe R, Shimizu T, Sugawara H, Watanabe H, Nakamura H, Choei H, Sasaki N, Yamagishi TM, Shimizu H (2004) Regulation of human melanoma growth and metastasis by AGE–AGE receptor interactions. J Invest Dermatol 122:461–467

Greven WL, Waanders F, Nagai R, van den Heuvel MC, Navis G, van Goor H (2005) Mesangial accumulation of GA-pyridine, a novel glycolaldehyde-derived AGE, in human renal disease. Kidney Int 68:595–602

Sun P, Cheng KW, He Y, Liu B, Mao X, Chen F (2018) Screening and identification of inhibitors of advanced glycation endproduct formation from microalgal extracts. Food Funct 9:1683–1691

Yang R, Wang WX, Chen HJ, He ZC, Jia AQ (2018) The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers. J Food Drug Anal 26:252–259

Tang Y, Chen A (2014) Curcumin eliminates the effect of advanced glycation end products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab Invest 94:503–516

Upadhyay A, Tuenter E, Ahmad R, Amin A, Exarchou V, Apers S, Hermans N, Pieters L (2014) Kavalactones, a novel class of protein glycation and lipid peroxidation inhibitors. Planta Med 80:1001–1008

Manabe Y, Takii Y, Sugawara T (2020) Siphonaxanthin, a carotenoid from green algae, suppresses advanced glycation end product-induced inflammatory responses. J Nat Med 74:127–134

Sugiura S, Minami Y, Taniguchi R, Tanaka R, Miyake H, Mori T, Ueda M, Shibata T (2017) Evaluation of anti–glycation activities of phlorotannins in human and bovine serum albumin–methylglyoxal models. Nat Prod Commun 12:1793–1796

Sugiura S, Taniguchi R, Nishioka Y, Iwase R, Tanaka R, Miyake H, Mori T, Ueda M, Shibata T (2018) Evaluation of anti–glycation activities of phlorotannins in human and bovine serum albumin—glyceraldehyde models. Nat Prod Commun 13:1007–1010

Liu H, Gu L (2012) Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. J Agric Food Chem 60:1326–1334

Kamei Y, Sagara A (2002) Neurite outgrowth promoting activity of marine algae from Japan against rat adrenal medulla pheochromocytoma cell line, PC12D. Cytotechnology 40:99–106

Tsang CK, Sagara A, Kamei Y (2001) Structure-activity relationship of a neurite outgrowth-promoting substance purified from the brown alga, Sargassum macrocarpum, and its analogues on PC12D cells. J Appl Phycol 13:349–357

Tsang CK, Kamei Y (2004) Sargaquinoic acid supports the survival of neuronal PC12D cells in a growth factor-independent manner. Eur J Pharmacol 488:11–18

Kamei Y, Tsang CK (2003) Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinase-mediated signaling pathways in PC12D cells. Int J Dev Neurosci 21:255–262

Kamei Y, Sueyoshi M, Hayashi K, Terada R, Nozaki H (2009) The novel anti-Propiobacterium acnes compound, Sargafuran, found in the marine brown alga Sargassum macrocarpum. J Antibiot (Tokyo) 62:259–263

Choi YK, Kin J, Lee KM, Choi YJ, Ye BR, Kim MS, Ko SG, Lee SH, Kang DH, Heo SJ (2017) Tuberatolide B suppresses cancer progression by promoting ROS–mediated inhibition of STAT3 signaling. Mar Drugs 15:55

Kim EA, Kim SY, Kim J, Oh JY, Kim HS, Yoon WJ, Kang DH, Heo SJ (2019) Tuberatolide B is isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-κB signaling pathway in RAW264.7 cells and zebrafish model. J Funct Foods 52:109–115

Rivera P, Podestá F, Norte M, Cataldo F, González AG (1990) New plastoquinone from the brown algae Desmarestia menziesii. Can J Chem 68:1399–1400

Numata A, Kanbara S, Takahashi C, Fujiki R, Yoneda M, Usami Y, Fujita E (1992) A cytotoxic principle of the brown alga Sargassum tortile and structures of chromenes. Phytochem 31:1209–1213

Davyt D, Enz W, Manta E, Navarro G, Norte M (1997) New chromenols from brown alga Desmarestia menziesii. Nat Prod Let 9:305–312

Ankisetty S, Nandiraju S, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic peninsula. J Nat Prod 67:1295–1302

Ishitsuka M, Kusumi T, Nomura Y, Konno T, Kakisawa H (1979) New geranylgeranylbenzoquinone derivatives from Sargassum tortile. Chem Lett 8:1269–1272

Brkljača R, Urban S (2015) Chemical profiling (HPLC-NMR & HPLC-MS), isolation, and identification of bioactive meroterpenoids from southern Australian marine brown algae Sargassum paradoxum. Mar Drugs 13:102–127

Kusumi T, Shibata Y, Ishitsuka M, Kinoshita T, Kakisawa H (1979) Structure of new plastoquinones from the brown alga Sargassum serratifolium. Chem Lett 8:277–278

Seo Y, Park KE, Kin YA, Lee HJ, Yoo JS, Ahn JW, Lee BJ (2006) Isolation of tetraprenyltoluquinols from the brown alga Sargassum thunbergii. Chem Pharm Bull 54:1730–1733

Segawa M, Shirahama H (1987) New plastoquinones from brown alga Sargassum sagamianum var. yezoense. Chem Lett 15:1365–1366

Kim MC, Kwon HC, Kim SN, Kim HS, Um BH (2011) Plastoquinones from Sargassum yezoense: chemical structures and effects on the activation of peroximes proliferator-activated receptor gamma. Chem Pharm Bull 59:834–838

Choi H, Hwang H, Chin J, Kim E, Lee J, Nam SJ, Lee BC, Rho BJ, Kang H (2011) Tuberatolides, potent FXR antagonists from the Korea marine tunicate Botryllus tuberatus. J Nat Prod 74:90–94

Horie S, Tsutsumi S, Takada Y, Kimura J (2008) Antibacterial quinone metabolites from the Brown alga, Sargassum sagamianum. Bull Chem Soc Jpn 81:1125–1130