Macro roles for microRNAs in neurodegenerative diseases
Tài liệu tham khảo
Wang, 2017, A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain, Nat. Rev. Neurol., 13, 703, 10.1038/nrneurol.2017.147
Fil, 2013, Pain in Parkinson disease: a review of the literature, Park. Relat. Disord., 19, 285, 10.1016/j.parkreldis.2012.11.009
Zarei, 2015, A comprehensive review of amyotrophic lateral sclerosis, Surg. Neurol. Int., 6, 171, 10.4103/2152-7806.169561
Ross, 2014, Huntington disease: natural history, biomarkers and prospects for therapeutics, Nat. Rev. Neurol., 10, 204, 10.1038/nrneurol.2014.24
Orr, 2012, Cell biology of spinocerebellar ataxia, J. Cell Biol., 197, 167, 10.1083/jcb.201105092
Soto, 2003, Unfolding the role of protein misfolding in neurodegenerative diseases, Nat. Rev. Neurosci., 4, 49, 10.1038/nrn1007
Douglas, 2010, Protein homeostasis and aging in neurodegeneration, J. Cell Biol., 190, 719, 10.1083/jcb.201005144
Gascon, 2012, Cause or effect: misregulation of microRNA pathways in neurodegeneration, Front. Neurosci., 6, 48, 10.3389/fnins.2012.00048
Filipowicz, 2008, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nat. Rev. Genet., 9, 102, 10.1038/nrg2290
Lugli, 2005, Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner, J. Neurochem., 94, 896, 10.1111/j.1471-4159.2005.03224.x
Sambandan, 2017, Activity-dependent spatially localized miRNA maturation in neuronal dendrites, Science, 355, 634, 10.1126/science.aaf8995
Friedman, 2009, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92, 10.1101/gr.082701.108
Rajgor, 2016, The ins and outs of miRNA-Mediated gene silencing during neuronal synaptic plasticity, Noncoding RNA, 2
Kosik, 2006, The neuronal microRNA system, Nat. Rev. Neurosci., 7, 911, 10.1038/nrn2037
McNeill, 2012, MicroRNAs shape the neuronal landscape, Neuron, 75, 363, 10.1016/j.neuron.2012.07.005
Maciotta, 2013, The involvement of microRNAs in neurodegenerative diseases, Front. Cell. Neurosci., 7, 265, 10.3389/fncel.2013.00265
Cookson, 2017, RNA-binding proteins implicated in neurodegenerative diseases, Wiley Interdiscip Rev RNA, 8, 10.1002/wrna.1397
Kim, 2014, Genetic markers for diagnosis and pathogenesis of Alzheimer's disease, Gene, 545, 185, 10.1016/j.gene.2014.05.031
Sun, 2017, Alzheimer's disease: from genetic variants to the distinct pathological mechanisms, Front. Mol. Neurosci., 10, 319, 10.3389/fnmol.2017.00319
Riancho, 2017, MicroRNA profile in patients with Alzheimer's disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples, J Alzheimers Dis, 57, 483, 10.3233/JAD-161179
Kumar, 2013, Circulating miRNA biomarkers for Alzheimer's disease, PLoS One, 8, 10.1371/journal.pone.0069807
Cheng, 2013, The detection of microRNA associated with Alzheimer's disease in biological fluids using next-generation sequencing technologies, Front. Genet., 4, 150, 10.3389/fgene.2013.00150
Cogswell, 2008, Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways, J Alzheimers Dis, 14, 27, 10.3233/JAD-2008-14103
Sethi, 2009, Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex, Neurosci. Lett., 459, 100, 10.1016/j.neulet.2009.04.052
Schonrock, 2010, Neuronal microRNA deregulation in response to Alzheimer's disease amyloid-beta, PLoS One, 5, 10.1371/journal.pone.0011070
Coolen, 2013, miR-9: a versatile regulator of neurogenesis, Front. Cell. Neurosci., 7, 220, 10.3389/fncel.2013.00220
Schonrock, 2012, Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-beta, J. Mol. Neurosci., 46, 324, 10.1007/s12031-011-9587-2
Mairet-Coello, 2013, The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation, Neuron, 78, 94, 10.1016/j.neuron.2013.02.003
Chang, 2014, microRNA-9 attenuates amyloidbeta-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2, Mol. Med. Rep., 9, 1917, 10.3892/mmr.2014.2013
Wang, 2008, The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1, J. Neurosci., 28, 1213, 10.1523/JNEUROSCI.5065-07.2008
Augustin, 2012, Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10, BMC Med. Genet., 13, 35, 10.1186/1471-2350-13-35
Yao, 2010, MicroRNA-related cofilin abnormality in Alzheimer's disease, PLoS One, 5, e15546, 10.1371/journal.pone.0015546
Miya Shaik, 2018, The role of microRNAs in Alzheimer's disease and their therapeutic potentials, Genes, 9, 10.3390/genes9040174
Poewe, 2017, Parkinson disease, Nat Rev Dis Primers, 3, 17013, 10.1038/nrdp.2017.13
Ibanez, 2004, Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease, Lancet, 364, 1169, 10.1016/S0140-6736(04)17104-3
Singleton, 2003, alpha-Synuclein locus triplication causes Parkinson's disease, Science, 302, 841, 10.1126/science.1090278
Zarranz, 2004, The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol., 55, 164, 10.1002/ana.10795
Spillantini, 1998, alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies, Proc. Natl. Acad. Sci. U. S. A., 95, 6469, 10.1073/pnas.95.11.6469
Spillantini, 1998, Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies, Neurosci. Lett., 251, 205, 10.1016/S0304-3940(98)00504-7
Junn, 2009, Repression of alpha-synuclein expression and toxicity by microRNA-7, Proc. Natl. Acad. Sci. U. S. A., 106, 13052, 10.1073/pnas.0906277106
Kabaria, 2015, Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson's disease, FEBS Lett., 589, 319, 10.1016/j.febslet.2014.12.014
Doxakis, 2010, Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153, J. Biol. Chem., 285, 12726, 10.1074/jbc.M109.086827
Auluck, 2002, Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease, Science, 295, 865, 10.1126/science.1067389
Klucken, 2004, Hsp70 reduces alpha-synuclein aggregation and toxicity, J. Biol. Chem., 279, 25497, 10.1074/jbc.M400255200
Zhang, 2014, miR-16-1 promotes the aberrant alpha-synuclein accumulation in Parkinson disease via targeting heat shock protein 70, ScientificWorldJournal, 938348
Alvarez-Erviti, 2013, Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease, Cell Death Dis., 4, 10.1038/cddis.2013.73
Kim, 2007, A MicroRNA feedback circuit in midbrain dopamine neurons, Science, 317, 1220, 10.1126/science.1140481
Bates, 2015, Huntington disease, Nat Rev Dis Primers, 1, 15005, 10.1038/nrdp.2015.5
Zuccato, 2003, Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes, Nat. Genet., 35, 76, 10.1038/ng1219
Conaco, 2006, Reciprocal actions of REST and a microRNA promote neuronal identity, Proc. Natl. Acad. Sci. U. S. A., 103, 2422, 10.1073/pnas.0511041103
Lee, 2011, Altered microRNA regulation in Huntington's disease models, Exp. Neurol., 227, 172, 10.1016/j.expneurol.2010.10.012
Kocerha, 2014, microRNA-128a dysregulation in transgenic Huntington's disease monkeys, Mol. Brain, 7, 46, 10.1186/1756-6606-7-46
Liu, 2015, MicroRNA-124 slows down the progression of Huntington's disease by promoting neurogenesis in the striatum, Neural Regen Res, 10, 786, 10.4103/1673-5374.156978
Taylor, 2016, Decoding ALS: from genes to mechanism, Nature, 539, 197, 10.1038/nature20413
Kawahara, 2012, TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes, Proc. Natl. Acad. Sci. U. S. A., 109, 3347, 10.1073/pnas.1112427109
Lagier-Tourenne, 2010, TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration, Hum. Mol. Genet., 19, R46, 10.1093/hmg/ddq137
Rajgor, 2016, Identification of novel nesprin-1 binding partners and cytoplasmic matrin-3 in processing bodies, Mol. Biol. Cell, 27, 3894, 10.1091/mbc.e16-06-0346
Freischmidt, 2014, Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers, Brain, 137, 2938, 10.1093/brain/awu249
Wakabayashi, 2014, Analysis of microRNA from archived formalin-fixed paraffin-embedded specimens of amyotrophic lateral sclerosis, Acta Neuropathol Commun, 2, 173, 10.1186/s40478-014-0173-z
Butovsky, 2012, Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS, J. Clin. Invest., 122, 3063, 10.1172/JCI62636
Campos-Melo, 2013, Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels, Mol. Brain, 6, 26, 10.1186/1756-6606-6-26
O'Connell, 2010, MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development, Immunity, 33, 607, 10.1016/j.immuni.2010.09.009
O'Connell, 2007, MicroRNA-155 is induced during the macrophage inflammatory response, Proc. Natl. Acad. Sci. U. S. A., 104, 1604, 10.1073/pnas.0610731104
Koval, 2013, Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice, Hum. Mol. Genet., 22, 4127, 10.1093/hmg/ddt261
Nolan, 2014, Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition, J. Mol. Neurosci., 53, 231, 10.1007/s12031-014-0290-y
Boise, 1993, bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell, 74, 597, 10.1016/0092-8674(93)90508-N
Nolan, 2016, Endoplasmic reticulum stress-mediated upregulation of miR-29a enhances sensitivity to neuronal apoptosis, Eur. J. Neurosci., 43, 640, 10.1111/ejn.13160
Li, 2013, Stress granules as crucibles of ALS pathogenesis, J. Cell Biol., 201, 361, 10.1083/jcb.201302044
Kim, 2014, Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models, Nat. Genet., 46, 152, 10.1038/ng.2853
Morlando, 2012, FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment, EMBO J., 31, 4502, 10.1038/emboj.2012.319
Mateju, 2017, An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function, EMBO J., 36, 1669, 10.15252/embj.201695957
Rajgor, 2014, Mammalian microtubule P-body dynamics are mediated by nesprin-1, J. Cell Biol., 205, 457, 10.1083/jcb.201306076
Rajgor, 2014, RNA granules and cytoskeletal links, Biochem. Soc. Trans., 42, 1206, 10.1042/BST20140067
Razafsky, 2015, A variant of Nesprin1 giant devoid of KASH domain underlies the molecular etiology of autosomal recessive cerebellar ataxia type I, Neurobiol. Dis., 78, 57, 10.1016/j.nbd.2015.03.027
Johnson, 2014, Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis, Nat. Neurosci., 17, 664, 10.1038/nn.3688
Foust, 2009, Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes, Nat. Biotechnol., 27, 59, 10.1038/nbt.1515
Stoica, 2016, Adeno associated viral vector delivered RNAi for gene therapy of SOD1 amyotrophic lateral sclerosis, Front. Mol. Neurosci., 9, 56, 10.3389/fnmol.2016.00056
Stoica, 2016, Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model, Ann. Neurol., 79, 687, 10.1002/ana.24618
