Machine learning techniques in searches for tt̄h in the h → bb̄ decay channel
Journal of Instrumentation - Tập 12 Số 04 - Trang P04014
Tài liệu tham khảo
citation_journal_title=Eur. Phys. J.; citation_title=Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions; citation_volume=53; citation_publication_date=2008; citation_firstpage=473; citation_doi=10.1140/epjc/s10052-007-0490-5; citation_arxiv_id=0706.2569;
citation_journal_title=Eur. Phys. J.; citation_title=Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at s1/2=7 TeV; citation_volume=72; citation_publication_date=2012; citation_firstpage=2211; citation_doi=10.1140/epjc/s10052-012-2211-y; citation_arxiv_id=1206.2135;
citation_journal_title=Eur. Phys. J.; citation_title=Search for the Standard Model Higgs boson produced in association with top quarks and decaying into bb̄ in pp collisions at s1/2 = 8 TeV with the ATLAS detector; citation_volume=75; citation_publication_date=2015; citation_firstpage=349; citation_doi=10.1140/epjc/s10052-015-3543-1; citation_arxiv_id=1503.05066;
citation_journal_title=J. High Energy Phys.; citation_title=The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations; citation_volume=2014; citation_issue=07; citation_publication_date=2014; citation_firstpage=079; citation_doi=10.1007/JHEP07(2014)079; citation_arxiv_id=1405.0301;
citation_journal_title=J. High Energy Phys.; citation_title=MadGraph 5: Going Beyond; citation_volume=2011; citation_issue=06; citation_publication_date=2011; citation_firstpage=128; citation_doi=10.1007/JHEP06(2011)128; citation_arxiv_id=1106.0522;
citation_journal_title=JINST; citation_title=A Convolutional Neural Network Neutrino Event Classifier; citation_volume=11; citation_publication_date=2016; citation_firstpage=P09001; citation_arxiv_id=1604.01444;
citation_journal_title=JINST; citation_title=A neural network clustering algorithm for the ATLAS silicon pixel detector; citation_volume=9; citation_publication_date=2014; citation_firstpage=P09009; citation_arxiv_id=1406.7690;
citation_journal_title=Phys. Rev.; citation_title=Search for a multi-Higgs-boson cascade in W+W-bb̄ events with the ATLAS detector in pp collisions at s1/2 = 8 TeV; citation_volume=89; citation_publication_date=2014; citation_firstpage=032002; citation_doi=10.1103/PhysRevD.89.032002; citation_arxiv_id=1312.1956;
citation_publication_date=2014;
citation_publication_date=2015;
citation_journal_title=JINST; citation_title=Performance of b-Jet Identification in the ATLAS Experiment; citation_volume=11; citation_publication_date=2016; citation_firstpage=P04008; citation_arxiv_id=1512.01094;
citation_publication_date=2016;
citation_journal_title=Phys. Rev.; citation_title=Fox-Wolfram Moments in Higgs Physics; citation_volume=87; citation_publication_date=2013; citation_firstpage=073014; citation_doi=10.1103/PhysRevD.87.073014; citation_arxiv_id=1212.4436;
citation_journal_title=Nucl. Phys.; citation_title=Parton distributions with QED corrections; citation_volume=877; citation_publication_date=2013; citation_firstpage=290; citation_doi=10.1016/j.nuclphysb.2013.10.010; citation_arxiv_id=1308.0598;
citation_journal_title=Eur. Phys. J.; citation_title=Boosting Higgs pair production in the bb̄bb̄ final state with multivariate techniques; citation_volume=76; citation_publication_date=2016; citation_firstpage=386; citation_doi=10.1140/epjc/s10052-016-4215-5; citation_arxiv_id=1512.08928;
citation_journal_title=Eur. Phys. J.; citation_title=Parameterized neural networks for high-energy physics; citation_volume=76; citation_publication_date=2016; citation_firstpage=235; citation_doi=10.1140/epjc/s10052-016-4099-4; citation_arxiv_id=1601.07913;
citation_journal_title=Eur. Phys. J.; citation_title=HERWIG++ Physics and Manual; citation_volume=58; citation_publication_date=2008; citation_firstpage=639; citation_doi=10.1140/epjc/s10052-008-0798-9; citation_arxiv_id=0803.0883;
citation_journal_title=Nat. Commun.; citation_title=Searching for Exotic Particles in High-Energy Physics with Deep Learning; citation_volume=5; citation_publication_date=2014; citation_firstpage=4308; citation_doi=10.1038/ncomms5308; citation_arxiv_id=1402.4735;
citation_journal_title=Phys. Rev. Lett.; citation_title=Enhanced Higgs Boson to τ+τ- Search with Deep Learning; citation_volume=114; citation_publication_date=2015; citation_firstpage=111801; citation_doi=10.1103/PhysRevLett.114.111801; citation_arxiv_id=1410.3469;
citation_journal_title=Phys. Rev. Lett.; citation_title=Observation of top quark production in p̄p collisions; citation_volume=74; citation_publication_date=1995; citation_firstpage=2626; citation_doi=10.1103/PhysRevLett.74.2626; citation_arxiv_id=hep-ex/9503002;
citation_journal_title=Phys. Rev. Lett.; citation_title=Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through 𝒪(α4S); citation_volume=110; citation_publication_date=2013; citation_firstpage=252004; citation_doi=10.1103/PhysRevLett.110.252004; citation_arxiv_id=1303.6254;
citation_title=Xgboost: A scalable tree boosting system; citation_author=T. Chen and C. Guestrin; citation_arxiv_id=1603.02754;
citation_journal_title=J. High Energy Phys.; citation_title=Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC; citation_volume=2013; citation_issue=05; citation_publication_date=2013; citation_firstpage=145; citation_doi=10.1007/JHEP05(2013)145; citation_arxiv_id=1303.0763;
citation_journal_title=Adv High Energy Phys.; citation_title=HepSim: a repository with predictions for high-energy physics experiments; citation_volume=2015; citation_publication_date=2015; citation_firstpage=136093; citation_doi=10.1155/2015/136093;
citation_journal_title=JINST; citation_title=Performance of Photon Reconstruction and Identification with the CMS Detector in Proton-Proton Collisions at s1/2 = 8 TeV; citation_volume=10; citation_publication_date=2015; citation_firstpage=P08010; citation_arxiv_id=1502.02702;
citation_journal_title=Phys. Rev.; citation_title=Search for Z' resonances decaying to tt̄ in dilepton+jets final states in pp collisions at s1/2=7 TeV; citation_volume=87; citation_publication_date=2013; citation_firstpage=072002; citation_doi=10.1103/PhysRevD.87.072002; citation_arxiv_id=1211.3338;
citation_title=Search for ttH production using the Matrix Element Method; citation_publication_date=2014;
citation_journal_title=Eur. Phys. J.; citation_title=Search for a Standard Model Higgs Boson Produced in Association with a Top-Quark Pair and Decaying to Bottom Quarks Using a Matrix Element Method; citation_volume=75; citation_publication_date=2015; citation_firstpage=251; citation_doi=10.1140/epjc/s10052-015-3454-1; citation_arxiv_id=1502.02485;
citation_publication_date=2016;
citation_journal_title=J. High Energy Phys.; citation_title=The Anti-kt jet clustering algorithm; citation_volume=2008; citation_issue=04; citation_publication_date=2008; citation_firstpage=063; citation_arxiv_id=0802.1189;
citation_journal_title=Phys. Rev. Lett.; citation_title=Observation of the top quark; citation_volume=74; citation_publication_date=1995; citation_firstpage=2632; citation_doi=10.1103/PhysRevLett.74.2632; citation_arxiv_id=hep-ex/9503003;
citation_journal_title=J. High Energy Phys.; citation_title=DELPHES 3, A modular framework for fast simulation of a generic collider experiment; citation_volume=2014; citation_issue=02; citation_publication_date=2014; citation_firstpage=057; citation_doi=10.1007/JHEP02(2014)057; citation_arxiv_id=1307.6346;
citation_title=A Neural Bayesian Estimator for Conditional Probability Densities; citation_author=M. Feindt; citation_arxiv_id=physics/0402093;
citation_journal_title=Nucl. Instrum. Meth.; citation_title=Introduction to HOBIT, a b-Jet Identification Tagger at the CDF Experiment Optimized for Light Higgs Boson Searches; citation_volume=697; citation_publication_date=2013; citation_firstpage=64; citation_doi=10.1016/j.nima.2012.09.021; citation_arxiv_id=1205.1812;
citation_journal_title=Phys. Rev.; citation_title=Jet Flavor Classification in High-Energy Physics with Deep Neural Networks; citation_volume=94; citation_publication_date=2016; citation_firstpage=112002; citation_doi=10.1103/PhysRevD.94.112002; citation_arxiv_id=1607.08633;
citation_journal_title=Int J. Mod. Phys.; citation_title=Review of Physics Results from the Tevatron: Top Quark Physics; citation_publication_date=2014; citation_arxiv_id=1409.5038;
citation_title=Pylearn2: a machine learning research library; citation_author=I.J. Goodfellow et al.; citation_arxiv_id=1308.4214;
citation_journal_title=SIGKDD Explor.; citation_title=The WEKA data mining software: An update; citation_volume=11; citation_publication_date=2009; citation_firstpage=10; citation_doi=10.1145/1656274.1656278;
citation_journal_title=J. High Energy Phys.; citation_title=Search for the associated production of the Higgs boson with a top-quark pair; citation_volume=2014; citation_issue=09; citation_publication_date=2014; citation_firstpage=087; citation_doi=10.1007/JHEP09(2014)087; citation_arxiv_id=1408.1682;
citation_journal_title=J. High Energy Phys.; citation_volume=2014; citation_issue=10; citation_publication_date=2014; citation_firstpage=106; citation_doi=10.1007/JHEP10(2014)106;
citation_journal_title=Adv Neural. Inform. Process. Syst.; citation_title=Imagenet classification with deep convolutional neural networks; citation_volume=25; citation_publication_date=2012; citation_firstpage=1097;
citation_title=Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables; citation_author=LHC Higgs Cross Section Working Group, S. Dittmaier et al.; citation_arxiv_id=1101.0593;
citation_journal_title=J. Phys. Conf. Ser.; citation_title=LHCb Topological Trigger Reoptimization; citation_volume=664; citation_publication_date=2015; citation_firstpage=082025; citation_doi=10.1088/1742-6596/664/8/082025; citation_arxiv_id=1510.00572;
citation_journal_title=Eur. Phys. J.; citation_title=FastJet user manual; citation_volume=72; citation_publication_date=2012; citation_firstpage=1896; citation_doi=10.1140/epjc/s10052-012-1896-2; citation_arxiv_id=1111.6097;
citation_journal_title=J. Phys. Conf. Ser.; citation_title=A neural network z-vertex trigger for Belle II; citation_volume=608; citation_publication_date=2015; citation_firstpage=012052; citation_doi=10.1088/1742-6596/608/1/012052; citation_arxiv_id=1410.1395;
citation_journal_title=Nucl. Instrum. Meth.; citation_title=Boosted decision trees, an alternative to artificial neural networks; citation_volume=543; citation_publication_date=2005; citation_firstpage=577; citation_doi=10.1016/j.nima.2004.12.018; citation_arxiv_id=physics/0408124;
citation_title=Going Deeper with Convolutions; citation_author=C. Szegedy et al.; citation_arxiv_id=1409.4842;
citation_journal_title=J. High Energy Phys.; citation_title=PYTHIA 6.4 Physics and Manual; citation_volume=2006; citation_issue=05; citation_publication_date=2006; citation_firstpage=026; citation_arxiv_id=hep-ph/0603175;
citation_title=Theano: A Python framework for fast computation of mathematical expressions; citation_author=R. Al-Rfou et al.; citation_arxiv_id=1605.02688;
citation_journal_title=BMC Bioinf.; citation_title=Biocat: a pattern recognition platform for customizable biological image classification and annotation; citation_volume=14; citation_publication_date=2013; citation_firstpage=291; citation_doi=10.1186/1471-2105-14-291;