Machine learning in neuroimaging: from research to clinical practice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Symms M, Jäger HR, Schmierer K, Yousry TA (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75(9):1235–1244
Raichle ME (1998) Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci U S A 95(3):765–772
Mateos-Pérez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami Y, Evans AC (2018) Structural neuroimaging as clinical predictor: a review of machine learning applications. Neuroimage Clin 20:506–522
Silva MA, See AP, Essayed WI, Golby AJ, Tie Y (2018) Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin 17:794–803
Petrella JR et al (2006) Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 240(3):793–802
Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 34(10):1866–1872
Leuthardt EC et al (2018) Integration of resting state functional MRI into clinical practice—a large single institution experience. PLoS ONE 13(6):e198349
Specht K (2020) Current challenges in translational and clinical fMRI and future directions. Front Psychiatry. https://doi.org/10.3389/fpsyt.2019.00924
Wu C et al (2021) Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 244:118649
Vaquero JJ, Kinahan P (2015) Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng 17:385–414
Soares DP, Law M (2009) Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 64(1):12–21
Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354(5):496–507
Herholz K, Coope D, Jackson A (2007) Metabolic and molecular imaging in neuro-oncology. Lancet 6(8):711–724
Pelletier D et al (2014) Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 13(8):807–822
Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB (2020) Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. https://doi.org/10.1016/S2215-0366(20)30255-8
Jirsa VK et al (2017) The virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage 145:377–388
Cocchi L, Harding IH, Lord A, Pantelis C, Yucel M, Zalesky A (2014) Disruption of structure—function coupling in the schizophrenia connectome. Neuroimage Clin 4:779–787
Rosenthal G et al (2018) Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nat Commun 9(1):2178
Ceccarelli A et al (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42(1):315–322
Friston KJ, Holmes AP, Worsley KJ, Poline J‑P, Frith CD, Frackowiak RSJ (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210
Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311
Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci U S A 103(10):3863–3868
Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430
Langs G, Menze BH, Lashkari D, Golland P (2011) Detecting stable distributed patterns of brain activation using Gini contrast. Neuroimage 56(2):497–507
Haxby JV et al (2011) A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72(2):404–416
Langs G et al (2014) Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients. Neuroimage 103:462–475
Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434–445
Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2019.2897538
Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024
Furtner J et al (2017) Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases. Eur Radiol. https://doi.org/10.1007/s00330-016-4707-6
Sabuncu MR (2015) Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinform 13(1):31
Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage. https://doi.org/10.1016/j.neuroimage.2005.02.018
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57
Ding Y et al (2020) Using deep convolutional neural networks for neonatal brain image segmentation. Front Neurosci. https://doi.org/10.3389/fnins.2020.00207
Payette K et al (2021) An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci Data 8(1):1–14
Cai JC et al (2020) Fully automated segmentation of head CT neuroanatomy using deep learning. Radiol Artif Intell. https://doi.org/10.1148/ryai.2020190183
Ronneberger O, Fischer P, Brox T (2015) U‑net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Interv. https://doi.org/10.48550/arXiv.1505.04597
Mi E, Mauricaite R, Pakzad-Shahabi L, Chen J, Ho A, Williams M (2021) Deep learning-based quantification of temporalis muscle has prognostic value in patients with glioblastoma. Br J Cancer 126(2):196–203
Park G et al (2021) White matter hyperintensities segmentation using the ensemble U‑Net with multi-scale highlighting foregrounds. Neuroimage 237:118140
Livne M et al (2019) A U‑Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci. https://doi.org/10.3389/fnins.2019.00097
Chen X, Konukoglu E (2018) Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. http://arxiv.org/abs/1806.04972. Accessed 15 Feb 2022
Kickingereder P et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20(5):728–740
Bakas S et al (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4(1):1–13
Aerts HJWL et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006
Zhou M et al (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39(2):208–216
Choi SW et al (2020) Multi-habitat radiomics unravels distinct phenotypic subtypes of glioblastoma with clinical and genomic significance. Cancers. https://doi.org/10.3390/cancers12071707
Kim Y, Cho H‑H, Kim ST, Park H, Nam D, Kong D‑S (2018) Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 60(12):1297–1305
Kang D et al (2018) Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 20(9):1251–1261
Jin B et al (2018) Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning. Epilepsia 59(5):982–992
Ganji Z, Hakak MA, Zamanpour SA, Zare H (2021) Automatic detection of focal cortical dysplasia type II in MRI: is the application of surface-based morphometry and machine learning promising? Front Hum Neurosci 15:608285
Lee HM et al (2020) Unsupervised machine learning reveals lesional variability in focal cortical dysplasia at mesoscopic scale. Neuroimage Clin 28:102438
Eshaghi A et al (2021) Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun 12(1):2078
Mouridsen K, Thurner P, Zaharchuk G (2020) Artificial intelligence applications in stroke. Stroke 51(8):2573–2579
Singh G et al (2021) Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 125(5):641–657
Haxby JV (2012) Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage 62(2):852–855
Mitchell TM et al (2008) Predicting human brain activity associated with the meanings of nouns. Science 320(5880):1191–1195
Kay KN, Naselaris T, Prenger RJ, Gallant JL (2008) Identifying natural images from human brain activity. Nature 452(7185):352–355
Huth AG, Lee T, Nishimoto S, Bilenko NY, Vu AT, Gallant JL (2016) Decoding the semantic content of natural movies from human brain activity. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2016.00081
Martino FD et al (2008) Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43(1):44–58. https://doi.org/10.1016/j.neuroimage.2008.06.037
Hanson SJ, Halchenko YO (2008) Brain reading using full brain support vector machines for object recognition: there is no ‘face’ identification area. Neural Comput 20(2):486–503
Farah MJ, Hutchinson JB, Phelps EA, Wagner AD (2014) Functional MRI-based lie detection: scientific and societal challenges. Nat Rev Neurosci 15(2):123–131
Horikawa T, Tamaki M, Miyawaki Y, Kamitani Y (2013) Neural decoding of visual imagery during sleep. Science 340(6132):639–642
Nishimoto S et al (2011) Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 21(19):1641–1646
Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL (2016) Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532(7600):453–458
Frey M, Nau M, Doeller CF (2021) Magnetic resonance-based eye tracking using deep neural networks. Nat Neurosci 24(12):1772–1779
Schulz M‑A et al (2020) Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nat Commun 11(1):4238
Abrol A et al (2021) Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nat Commun 12(1):353
Nenning K‑H et al (2021) The impact of hippocampal impairment on task-positive and task-negative language networks in temporal lobe epilepsy. Clin Neurophysiol 132(2):404–411
Xu T et al (2020) Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 223:117346
Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80:426–444
Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53(4):1197–1207
Jakab A et al (2015) Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. Neuroimage 111:277–288
Nenning K‑H et al (2020) Joint embedding: a scalable alignment to compare individuals in a connectivity space. Neuroimage 222:117232
Zhao K, Duka B, Xie H, Oathes DJ, Calhoun V, Zhang Y (2022) A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD. Neuroimage 246:118774
Kriegeskorte N (2015) Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu Rev Vis Sci 1:417–446
Goulas A, Damicelli F, Hilgetag CC (2021) Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks. Neural Netw 142:608–618
Bengio Y, Lee D‑H, Bornschein J, Mesnard T, Lin Z (2015) Towards biologically plausible deep learning. http://arxiv.org/abs/1502.04156. Accessed 30 Aug 2022
Kriegeskorte N et al (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141
Khaligh-Razavi S‑M, Kriegeskorte N (2014) Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput Biol 10(11):e1003915. https://doi.org/10.1371/journal.pcbi.1003915
la Tour TD, Lu M, Eickenberg M (2021) A finer mapping of convolutional neural network layers to the visual cortex. https://openreview.net/forum?id=EcoKpq43Ul8 (SVRHM 2021 Workshop). Accessed 30 Aug 2022
Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19
Du Y, Fu Z, Calhoun VD (2018) Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front Neurosci. https://doi.org/10.3389/fnins.2018.00525
Nenning K‑H et al (2020) Distributed changes of the functional connectome in patients with glioblastoma. Sci Rep 10(1):18312
Stoecklein VM et al (2020) Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro Oncol 22(9):1388–1398
Foesleitner O et al (2020) Language network reorganization before and after temporal lobe epilepsy surgery. J Neurosurg 134(6):1–9
Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin 17:16–23
Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F (2019) ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front Neuroinform. https://doi.org/10.3389/fninf.2019.00070
Damaraju E et al (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 5:298–308
Siddiqui MK, Morales-Menendez R, Huang X, Hussain N (2020) A review of epileptic seizure detection using machine learning classifiers. Brain Inform 7(1):1–18
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278
Dubreuil-Vall L, Ruffini G, Camprodon JA (2020) Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Front Neurosci. https://doi.org/10.3389/fnins.2020.00251
Klein A et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3):786–802
Cheng J, Dalca AV, Fischl B, Zöllei L, Alzheimer’s Disease Neuroimaging Initiative (2020) Cortical surface registration using unsupervised learning. Neuroimage 221:117161
Mueller S et al (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77(3):586–595
Schmitt JE, Raznahan A, Liu S, Neale MC (2021) The heritability of cortical folding: evidence from the human connectome project. Cereb Cortex 31(1):702–715
Wang D et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18(12):1853–1860
Kong R et al (2021) Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb Cortex 31(10):4477–4500
Margulies DS et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A 113(44):12574–12579
Nenning K‑H, Liu H, Ghosh SS, Sabuncu MR, Schwartz E, Langs G (2017) Diffeomorphic functional brain surface alignment: functional demons. Neuroimage 156:456–465
Burger B et al (2022) Disentangling cortical functional connectivity strength and topography reveals divergent roles of genes and environment. Neuroimage 247:118770