Machine learning enables design of on-chip integrated silicon T-junctions with footprint of 1.2 μ m× 1 . 2 μ m
Tài liệu tham khảo
Reed, 2004
Chrostowski, 2015
Jia, 2017, Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip, Opt. Express, 25, 20698, 10.1364/OE.25.020698
Ren, 2017, Three-mode mode division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX, Opt. Commun., 383, 525, 10.1016/j.optcom.2016.09.051
Cerutti, 2017, Engineering of closely packed silicon-on-isolator waveguide arrays for mode division multiplexing applications, J. Opt. Soc. Amer. B, 34, 497, 10.1364/JOSAB.34.000497
2006
Ashenden, 2008
Xu, 2005, Micrometre-scale silicon electro-optic modulator, Nature, 435, 325, 10.1038/nature03569
Luo, 2011, High quality factor etchless silicon photonic ring resonators, Opt. Express, 19, 6284, 10.1364/OE.19.006284
Miller, 2020, Large-scale optical phased array using a low-power multi-pass silicon photonic platform, Optica, 7, 3, 10.1364/OPTICA.7.000003
Yu, 2020, Raman Lasing and soliton mode-locking in lithium niobate microresonators, Light: Sci. Appl., 9, 1, 10.1038/s41377-019-0231-1
Leuthold, 2010, Nonlinear silicon photonics, Nat. Photonics, 4, 535, 10.1038/nphoton.2010.185
Bor, 2016, Differential evolution algorithm based photonic structure design: Numerical and experimental verification of subwavelength λ/5 focusing of light, Sci. Rep., 6, 30871, 10.1038/srep30871
Lu, 2013, Nanophotonic computational design, Opt. Express, 21, 13351, 10.1364/OE.21.013351
Piggott, 2014, Inverse design and implementation of a wavelength demultiplexing grating coupler, Sci. Rep., 4, 1, 10.1038/srep07210
Piggott, 2015, Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nat. Photon., 9, 374, 10.1038/nphoton.2015.69
Su, 2017, Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer, ACS Photon., 5, 301, 10.1021/acsphotonics.7b00987
Borel, 2004, Topology optimization and fabrication of photonic crystal structures, Opt. Express, 12, 1996, 10.1364/OPEX.12.001996
Shen, 2014, Integrated metamaterials for efficient and compact free-space-to-waveguide coupling, Opt. Express, 22, 27175, 10.1364/OE.22.027175
Shen, 2015, Integrated digital metamaterials enables ultra-compact optical diodes, Opt. Express, 23, 10847, 10.1364/OE.23.010847
Shen, 2015, An integrated-nanophotonics polarization beamsplitter with 2.4×2.4μm2 footprint, Nat. Photonics, 9, 378, 10.1038/nphoton.2015.80
Majumder, 2019, Programmable metamaterials & metasurfaces for ultra-compact multi-functional photonics
Majumder, 2017, Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials, Opt. Express, 25, 19721, 10.1364/OE.25.019721
Majumder, 2017
Shen, 2015, Integrated digital metamaterials enables ultra-compact optical diodes, Opt. Express, 23, 10847, 10.1364/OE.23.010847
Jia, 2018, Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device, ACS Photonics, 5, 1833, 10.1021/acsphotonics.8b00013
Piggott, 2017, Fabrication-constrained nanophotonic inverse design, Sci. Rep., 7, 1, 10.1038/s41598-017-01939-2
Callewaert, 2016, Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion, Sci. Rep., 6, 1, 10.1038/srep32577
L. Su, R. Trivedi, N.V. Sapra, A.Y. Piggott, D. Vercruysse, J. Vučković, Fully automated optimization of grating couplers, Opt. Express 26, 4023–4034.
Lalau-Keraly, 2013, Adjoint shape optimization applied to electromagnetic design, Opt. Express, 21, 21693, 10.1364/OE.21.021693
Wang, 2018, Adjoint-based optimization of active nanophotonic devices, Opt. Express, 26, 3236, 10.1364/OE.26.003236
Meem, 2019, Broadband lightweight flat lenses for long-wave infrared imaging, Proc. Nat. Acad. Sci., 116, 21375, 10.1073/pnas.1908447116
Biswas, 2013, Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data, Phys. Rev. D, 88, 10.1103/PhysRevD.88.062003
Kalinin, 2015, Big-deep smart data in imaging for guiding materials design, Nat. Mater., 14, 973, 10.1038/nmat4395
Carrasquilla, 2017, Machine learning phases of matter, Nat. Phys., 13, 431, 10.1038/nphys4035
Wang, 2016, Discovering phase transitions with unsupervised learning, Phys. Rev. B, 94, 10.1103/PhysRevB.94.195105
Deng, 2017, Machine learning topological states, Phys. Rev. B, 96, 10.1103/PhysRevB.96.195145
Turduev, 2018, Ultracompact photonic structure design for strong light confinement and coupling into nanowaveguide, J. Lightwave Technol., 36, 2812, 10.1109/JLT.2018.2821361
Yao, 2019, Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale, Nanophotonics, 8, 339, 10.1515/nanoph-2018-0183
Silver, 2017, Mastering the game of go without human knowledge, Nature, 550, 354, 10.1038/nature24270
Sutton, 2018
Kaelbling, 1996, Reinforcement learning: A survey, J. Artif. Intell. Res., 4, 237, 10.1613/jair.301
D.Silver T. Hubert, 2018, A general reinforcement learning algorithm that masters chess, shogi, and go through self-play, Science, 362, 1140, 10.1126/science.aar6404
Liu, 2018, Training deep neural networks for the inverse design of nanophotonic structures, ACS Photon., 5, 1365, 10.1021/acsphotonics.7b01377
Kiarashinejad, 2019, Knowledge discovery in nanophotonics using geometric deep learning, Adv. Intell. Syst.
So, 2019, Designing nanophotonic structures using conditional deep convolutional generative adversarial networks, Nanophotonics, 8, 1255, 10.1515/nanoph-2019-0117
Chugh, 2019, Machine learning regression approach to the nanophotonic waveguide analyses, J. Lightwave Technol., 37, 6080, 10.1109/JLT.2019.2946572
So, 2020, Deep learning enabled inverse design in nanophotonics, Nanophotonics, 10.1515/nanoph-2019-0474
Tahersima, 2019, Deep neural network inverse design of integrated photonic power splitters, Sci. Rep., 9, 1, 10.1038/s41598-018-37952-2
Cai, 2008, Application of optical proximity correction technology, Sci. China Ser. F-Inf. Sci., 51, 213, 10.1007/s11432-008-0006-4
Chang, 2018, Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers, Photon. Res., 6, 660, 10.1364/PRJ.6.000660
Zhang, 2013, A compact and low loss Y-junction for submicron silicon waveguide, Opt. Express, 21, 1310, 10.1364/OE.21.001310
Kurt, 2011, Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network, Opt. Express, 19, 26827, 10.1364/OE.19.026827
Alpkılıç, 2019, Parametric study of multi-outputs T-junction spatial mode demultiplexers design with an objective-first algorithm
Xu, 2017, Integrated photonic power divider with arbitrary power ratios, Optim. Lett., 42, 855, 10.1364/OL.42.000855
Lin, 2019, Broadband, low-loss silicon photonic y-junction with an arbitrary power splitting ratio, Opt. Express, 27, 14338, 10.1364/OE.27.014338
Ren, 2019
Xie, 2020, An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure, IEEE Photon. Technol. Lett., 32, 341, 10.1109/LPT.2020.2975128
Chang, 2018, Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter, Opt. Express, 26, 24135, 10.1364/OE.26.024135
Latifoğlu, 2017
https://www.lumerical.com/learn/whitepapers/lumericals-2-5d-fdtd-propagation-method/.
M. Smit, 2012, Moore’s law in photonics, Laser Photonics Rev., 6, 1, 10.1002/lpor.201100001
Punch, 2012, Thermal challenges in photonic integrated circuits, 1
Hudgings, 2003, Thermal profiling for optical characterization of waveguide devices, Appl. Phys. Lett., 83, 3882, 10.1063/1.1625790
Gilardi, 2014, Deep trenches for thermal crosstalk reduction in InP-based photonic integrated circuits, J. Lightwave Technol., 32, 4864, 10.1109/JLT.2014.2366781