Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts
Tài liệu tham khảo
Sun Y, Wachche SV, Mills A, Ma O. 2018 Renewable Energy Grid Integration Data Book.
Vos, 2019, Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium, Energy Policy, 124, 272, 10.1016/j.enpol.2018.09.031
Constantinescu, 2011, A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation, IEEE Trans Power Syst, 26, 431, 10.1109/TPWRS.2010.2048133
Dvorkin, 2015, A hybrid stochastic/interval approach to transmission-constrained unit commitment, IEEE Trans Power Syst, 30, 621, 10.1109/TPWRS.2014.2331279
Feng Y. Scenario Generation and Reduction for Long-term and Short-term Power System Generation Planning under Uncertainties, https://lib.dr.iastate.edu/etd/14148.
Lange M. Analysis of the uncertainty of wind power predictions, https://oops.uni-oldenburg.de/id/eprint/233.
Pinson, 2009, From probabilistic forecasts to statistical scenarios of short-term wind power production, Wind Energy, 12, 51, 10.1002/we.284
Papaefthymiou, 2006, Integration of stochastic generation in power systems, Int J Electr Power Energy Syst, 28, 655, 10.1016/j.ijepes.2006.03.004
Papoulis, 1990
Young, 1988, Multivariate statistical simulation., J R Stat Soc Ser A, 151, 229, 10.2307/2982203
Chakraborty, 2006, Generating multivariate correlated samples, Comput Statist, 21, 103, 10.1007/s00180-006-0254-y
Charmpis, 2004, A heuristic approach for the generation of multivariate random samples with specified marginal distributions and correlation matrix, Comput Statist, 19, 283, 10.1007/BF02892061
Ortega-Vazquez, 2010, Assessing the impact of wind power generation on operating costs, IEEE Trans Smart Grid, 1, 295, 10.1109/TSG.2010.2081386
Smith, 1993, Moment methods for decision analysis, Manage Sci, 39, 340, 10.1287/mnsc.39.3.340
Mawardi, 2004, SAMS: Stochastic analysis with minimal sampling—A fast algorithm for analysis and design under uncertainty, J Mech Des, 127, 558, 10.1115/1.1866157
Donato, 2014, QUICKER: Quantifying uncertainty in computational knowledge engineering rapidly—A rapid methodology for uncertainty analysis, Powder Technol, 265, 54, 10.1016/j.powtec.2014.01.028
Hu, 2019, A new clustering approach for scenario reduction in multi-stochastic variable programming, IEEE Trans Power Syst, 34, 3813, 10.1109/TPWRS.2019.2901545
Xie, 2010, Research on the similarity measurement of high dimensional data, Comput Eng Sci, 32, 92
Dupačová, 2003, Scenario reduction in stochastic programming an approach using probability metrics, Math Program, 95, 493, 10.1007/s10107-002-0331-0
Sumaili J, Keko H, Miranda V, Botterud A, Wang J. Clustering-based wind power scenario reduction technique, in: 17th Power Systems Computation Conference, Stockholm Sweden, 2011.
Heitsch, 2007, A note on scenario reduction for two-stage stochastic programs, Oper Res Lett, 35, 731, 10.1016/j.orl.2006.12.008
Wang, 2010
Morales, 2009, Scenario reduction for futures market trading in electricity markets, IEEE Trans Power Syst, 24, 878, 10.1109/TPWRS.2009.2016072
Li, 2016, A scenario optimal reduction method for wind power time series, IEEE Trans Power Syst, 31, 1657, 10.1109/TPWRS.2015.2412687
Liu, 2017, Probabilistic load forecasting via quantile regression averaging on sister forecasts, IEEE Trans Smart Grid, 8, 730
Barrows, 2020, The IEEE reliability test system: A proposed 2019 update, IEEE Trans Power Syst, 35, 119, 10.1109/TPWRS.2019.2925557
California ISO - Today’s Outlook. URL http://www.caiso.com/TodaysOutlook.
Stewart, 1998
Kaczynski, 2012, Nonparametric random variate generation using a piecewise-linear cumulative distribution function, Comm Statist Simulation Comput, 41, 449, 10.1080/03610918.2011.606947
Efron, 1979, Bootstrap methods: Another look at the jackknife, Ann Statist, 7, 1, 10.1214/aos/1176344552
Chen T, Guestrin C. XGBoost: A scalable tree boosting system, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.
Bishop, 2006
Halkidi, 2001, On clustering validation techniques, Intell Inf Syst, 17, 107, 10.1023/A:1012801612483
Bagnall, 2004, Clustering time series from ARMA models with clipped data, 49
Fu, 2011, A review on time series data mining, Eng Appl Artif Intell, 24, 164, 10.1016/j.engappai.2010.09.007
Papadimitriou S, Sun J, Yu P. Local correlation tracking in time series, in: Proceedings - IEEE International Conference on Data Mining, ICDM 2006, pp. 456–465.
Paparrizos J, Gravano L. K-shape: Efficient and accurate clustering of time series, in: Proc. ACM SIGMOD Int. Conf. Manag. Data 2015, pp. 1855–1870.
Jin, 2006, Fast and exact out-of-core and distributed k-means clustering, Knowl Inf Syst, 10, 17, 10.1007/s10115-005-0210-0
Kreyszig, 2011
James, 2013, 10.1007/978-1-4614-7138-7
Madiraju, 2018