Machine learning-based thermokarst landslide susceptibility modeling across the permafrost region on the Qinghai-Tibet Plateau

Landslides - Tập 18 - Trang 2639-2649 - 2021
Guoan Yin1, Jing Luo1, Fujun Niu1, Zhanju Lin1, Minghao Liu1
1State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Tóm tắt

Thermokarst landslides (TL) caused by the thaw of ground ice in permafrost slopes are increasing on the Qinghai-Tibet Plateau (QTP), but the understanding of the spatially suitable environmental conditions including terrains and climate for them has not been fully established. Here, we applied multiple machine learning models and their ensemble to explore factors controlling the TL and map its susceptibility at a fine resolution. The models were calibrated and validated using a split-sample approach based on an inventory of TLs from the remote sensing data. The models indicated that summer air temperature and rainfall were the most two important factors controlling the occurrence and distribution of TLs, provided that other geomorphic conditions (i.e., slope, solar radiation, and fine soil) were suitable. The final ensemble susceptibility map based on downscaled climate data and terrain data suggested that ca. 1.4% of the QTP land was classified in high- to very high-susceptibility zone, which is likely to increase in response to future climate change. This study integrated local topography and climate in susceptibility modeling and provided new insights into the geomorphic sensitivity to climate change but also the engineering support over the QTP.

Tài liệu tham khảo

Aalto J, Karjalainen O, Hjort J, Luoto M (2018) Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness. Geophys Res Lett 45(10):4889–4898. https://doi.org/10.1029/2018GL078007 Balser AW, Jones JB, Gens R (2014) Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. J Geophys Res-Earth 119(5):1106–1120. https://doi.org/10.1002/2013JF002889 Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov AY (2019) Permafrost is warming at a global scale. Nat Commun 10(1):264. https://doi.org/10.1038/s41467-018-08240-4 Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19(10):2940–2955. https://doi.org/10.1111/gcb.12277 Cheng G (1983) The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Reg Sci Technol 8(1):57–66. https://doi.org/10.1016/0165-232X(83)90017-4 Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015 Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17(8):1897–1914. https://doi.org/10.1007/s10346-020-01392-9 Di Napoli M, Di Martire D, Bausilio G, Calcaterra D, Confuorto P, Firpo M, Pepe G, Cevasco A (2021) Rainfall-induced shallow landslide detachment, transit and runout susceptibility mapping by integrating machine learning techniques and GIS-based approaches. Water 13:488. https://doi.org/10.3390/w13040488 Ding Y, Mu C, Wu T, Hu G, Zou D, Wang D, Li W, Wu X (2020) Increasing cryospheric hazards in a warming climate. Earth-Sci Rev 103500:103500. https://doi.org/10.1016/j.earscirev.2020.103500 ESRI (2014) ArcGIS desktop: release 10.2.2. Environmental Systems Research Institute: Redlands, CA. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086 Francis JA, Vavrus SJ, Cohen J (2017) Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections. WIREs Clim. Change 8(5), e474. https://doi.org/10.1002/wcc.474 Fraser R, Kokelj SV, Lantz TC, Mcfarlanewinchester M, Olthof I, Lacelle D (2018) Climate sensitivity of high arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens 10(6):954. https://doi.org/10.3390/rs10060954 French HM (2007) The periglacial environment, Third edn. John Wiley & Sons, Chichester, West Sussex Grosse G, Goetz S, McGuire AD, Romanovsky VE, Schuur EAG (2016) Changing permafrost in a warming world and feedbacks to the Earth system. Environ Res Lett 11(4):040201. https://doi.org/10.1088/1748-9326/11/4/040201 Guo D, Wang H (2016) CMIP5 permafrost degradation projection: a comparison among different regions. J Geophys Res-Atmospheres 121(9):4499–4517. https://doi.org/10.1002/2015JD024108 Guo X, Wang L, Tian L (2016) Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau. Int J Climatol 36(4):1901–1916. https://doi.org/10.1002/joc.4468 Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hoelzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Noezli J, Phillips M, Ross N, Seppala M, Springman SM, Mühll DV (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92(3–4):117–171. https://doi.org/10.1016/j.earscirev.2008.12.002 Heckmann T, Gegg K, Gegg A, Becht M (2014) Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Nat Hazard Earth Sys 14(2):259–278. https://doi.org/10.5194/nhess-14-259-2014 Hengl T, De Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotic A, Shangguan W, Wright MN, Geng X, Bauermarschallinger B (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2):e0169748. https://doi.org/10.1371/journal.pone.0169748 Hjort J, Etzelmüller B, Tolgensbakk J (2010) Effects of scale and data source in periglacial distribution modelling in a high arctic environment, western Svalbard. Permafrost Periglac 21(4):345–354. https://doi.org/10.1002/ppp.705 Holloway JE, Rudy AC, Lamoureux SF, Treitz PM (2017) Determining the terrain characteristics related to the surface expression of subsurface water pressurization in permafrost landscapes using susceptibility modelling. Cryosphere 11(3):1403–1415. https://doi.org/10.5194/tc-11-1403-2017 Huang L, Luo J, Lin Z, Niu F, Liu L (2020) Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens Environ 237:111534. https://doi.org/10.1016/j.rse.2019.111534 Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Jarvis AHI, Reuter A, Nelson E, Guevara (2008) Hole-filled SRTM for the globe version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org). Jones MKW, Pollard WH, Jones BM (2019) Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environ Res Lett 14(5):055006. https://doi.org/10.1088/1748-9326/ab12fd Karjalainen O, Luoto M, Aalto J, Hjort J (2019) New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas. Cryosphere 13(2):693–707. https://doi.org/10.5194/tc-13-693-2019 Kokelj SV, Burn CR (2005) Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafrost Periglac 16(3):291–303. https://doi.org/10.1002/ppp.537 Kokelj SV, Jorgenson MT (2013) Advances in thermokarst research. Permafrost Periglac 24(2):108–119. https://doi.org/10.1002/ppp.1779 Kokelj SV, Tunnicliffe J, Lacelle D, Lantz TC, Chin KS, Fraser R (2015) Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Glob Planet Chang 129:56–68. https://doi.org/10.1016/j.gloplacha.2015.02.008 Kuang X, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res-Atmos 121(8):3979–4007. https://doi.org/10.1002/2015JD024728 Lacelle D, Bjornson J, Lauriol B (2010) Climatic and geomorphic factors affecting contemporary (1950–2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada. Permafrost Periglac 21(1):1–15. https://doi.org/10.1002/ppp.666 Lacelle D, Brooker A, Fraser RH, Kokelj SV (2015) Distribution and growth of thaw slumps in the Richardson Mountains-Peel Plateau region, northwestern Canada. Geomorphology 235:40–51. https://doi.org/10.1016/j.geomorph.2015.01.024 Lamoureux SF, Lafrenière MJ (2009) Fluvial impact of extensive active layer detachments, Cape Bounty, Melville Island. Canada Arc Antarct Alp Res 41(1):59–68. https://doi.org/10.1657/1523-0430-41.1.59 Lewkowicz AG (2007) Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafrost Periglac 18(1):89–103. https://doi.org/10.1002/ppp.578 Lewkowicz AG, Harris C (2005) Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Permafrost Periglac 16(1):115–130. https://doi.org/10.1002/ppp.522 Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat Commun 10(1):1329. https://doi.org/10.1038/s41467-019-09314-7 Liljedahl A, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318. https://doi.org/10.1038/ngeo2674 Luo J, Niu F, Lin Z, Liu M, Yin G (2019) Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe Region. Geomorphology 341:79–85. https://doi.org/10.1016/j.geomorph.2019.05.020 Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Sci Rev 207:103225. https://doi.org/10.1016/j.earscirev.2020.103225 Mu C, Abbott BW, Norris AJ, Mu M, Fan C, Chen X, Jia L, Yang R, Zhang T, Wang K (2020a) The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Sci Rev 103433:103433. https://doi.org/10.1016/j.earscirev.2020.103433 Mu C, Shang J, Zhang T, Fan C, Wang S, Peng X, Zhong W, Zhang F, Mu M, Jia L (2020b) Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides 17(5):1051–1062. https://doi.org/10.1007/s10346-020-01344-3 Niu F, Luo J, Lin Z, Liu M, Yin G (2014) Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai-Tibet Engineering Corridor. China Nat Hazards 74(3):1667–1682. https://doi.org/10.1007/s11069-014-1267-4 Obu J, Westermann S, Bartsch A, Berdnikov N, Christiansen HH, Dashtseren A, Delaloye R, Elberling B, Etzelmüller B, Kholodov A, Khomutov A, Kääb A, Leibman MO, Lewkowicz AG, Panda SK, Romanovsky V, Way RG, Westergaard-Nielsen A, Wu T, Yamkhin J, Zou D (2019) Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci Rev 193:299–316. https://doi.org/10.1016/j.earscirev.2019.04.023 Olefeldt D, Goswami S, Grosse G, Hayes DJ, Hugelius G, Kuhry P, Mcguire AD, Romanovsky VE, Sannel ABK, Schuur EAG (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nat Commun 7(1):13043–13043. https://doi.org/10.1038/ncomms13043 Patton AI, Rathburn SL, Capps DM (2019) Landslide response to climate change in permafrost regions. Geomorphology 340:116–128. https://doi.org/10.1016/j.geomorph.2019.04.029 Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler HJ, Greenwood GB, Hashmi MZ, Liu X (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430. https://doi.org/10.1038/nclimate2563 Qiu J (2008) The third pole. Nature 454:24–396. https://doi.org/10.1038/454393a R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth-Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001 Rudy AC, Lamoureux SF, Treitz P, Van Ewijk KY (2016) Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models. Geomorphology 264:95–108. https://doi.org/10.1016/j.geomorph.2016.04.011 Rudy AC, Lamoureux SF, Treitz P, Ewijk KV, Bonnaventure PP, Budkewitsch P (2017) Terrain controls and landscape-scale susceptibility modelling of active-layer detachments, Sabine Peninsula, Melville Island, Nunavut. Permafrost Periglac 28(1):79–91. https://doi.org/10.1002/ppp.1900 Segal RA, Lantz TC, Kokelj SV (2016) Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environ Res Lett 11(3):034025. https://doi.org/10.1088/1748-9326/11/3/034025 Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 32:369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x Wang ZW, Wang Q, Zhao L, Wu XD, Yue GY, Zou DF, Nan ZT, Liu GY, Pang QQ, Fang HB, Wu TH, Shi JZ, Jiao KQ, Zhao YH, Zhang LL (2016) Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J Mt Sci 13(6):1035–1046. https://doi.org/10.1007/s11629-015-3485-y Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x Yang M, Wang X, Pang G, Wan G, Liu Z (2019) The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes. Earth-Sci Rev 190:353–369. https://doi.org/10.1016/j.earscirev.2018.12.018 Yao T (2019) Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci Bull 64(7):417. https://doi.org/10.1016/j.scib.2019.03.033 Yin G, Zheng H, Niu F, Luo J, Lin Z, Liu M (2018) Numerical mapping and modeling permafrost thermal dynamics across the Qinghai-Tibet Engineering Corridor, China integrated with remote sensing. Remote Sens 10(12):2069. https://doi.org/10.3390/rs10122069 Zhang H, Zhang F, Zhang G, Che T, Yan W (2018) How accurately can the air temperature lapse rate over the Tibetan Plateau be estimated from MODIS LSTs. J Geophys Res Atmos 123(8):3943–3960. https://doi.org/10.1002/2017JD028243 Zhao L, Wu Q, Marchenko S, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafrost Periglac 21(2):198–207. https://doi.org/10.1002/ppp.688 Zhao L, Zou D, Hu G, Du E, Pang Q, Xiao Y, Li R, Sheng Y, Wu X, Sun Z (2020) Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau. Permafrost Periglac 31:396–405. https://doi.org/10.1002/ppp.2056