Machine learning-based estimation of power output in solar photovoltaic systems under real-world conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
<li>D. C. Jordan, S. R. Kurtz, K. VanSant, and J. Newmiller, “Compendium of photovoltaic degradation rates”, <em>Progress in Photovoltaics: Research and Applications</em>, vol. 24, no. 7, pp. 978–989, 2016. https://doi.org/10.1002/pip.2744</li>
<li>Y. Chen, Y. Liu, Z. Tian, Y. Dong, Y. Zhou, X. Wang, and D. Wang, “Experimental study on the effect of dust deposition on photovoltaic panels”, <em>Energy Procedia</em>, vol. 158, pp. 483–489, 2019. https://doi.org/10.1016/j.egypro.2019.01.139</li>
<li>S. A. Sadat, J. Faraji, M. Naziffard, and A. Ketabi, “The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment”, <em>Sustainable Energy Technologies and Assessments</em>, vol. 47, 2021. https://doi.org/10.1016/j.seta.2021.101542</li>
<li>M. Rashid, M. Yousif, Z. Rashid, A. Muhammad, M. Altaf, and A. Mustafa, “Effect of dust accumulation on the performance of photovoltaic modules for different climate regions”, <em>Heliyon</em>, vol. 9, no. 12, e23069, 2023. https://doi.org/10.1016/j.heliyon.2023.e23069</li>
<li>Z. A. Darwish, K. Sopian, and A. Fudholi, “Reduced output of photovoltaic modules due to different types of dust particles”, <em>Journal of Cleaner Production</em>, vol. 280, 124317, 2021. https://doi.org/10.1016/j.jclepro.2020.124317</li>
<li>T. M. A. Alnasser, A. M. J. Mahdy, K. I. Abass, M. T. Chaichan, and H. A. Kazem, “Impact of dust ingredient on photovoltaic performance: An experimental study”, <em>Solar Energy</em>, vol. 195, pp. 651–659, 2020. https://doi.org/10.1016/j.solener.2019.12.008</li>
<li>A. A. Hachicha, I. Al-Sawafta, and Z. Said, “Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions”, <em>Renewable Energy</em>, vol. 141, pp. 287–297, 2019. https://doi.org/10.1016/j.renene.2019.04.004</li>
<li>Y. Shen, M. Fouladjiard, and A. Grall, “Impact of dust and temperature on photovoltaic panel performance: A model-based approach to determine optimal cleaning frequency”, <em>Heliyon</em>, vol. 10, e25390, 2024. https://doi.org/10.1016/j.heliyon.2024.e25390</li>
<li>W. Al-Kouz, S. Al-Dahidi, B. Hammad, and M. Al-Abed, “Modeling and analysis framework for investigating the impact of dust and temperature on PV systems’ performance and optimum cleaning frequency”, <em>Applied Sciences</em>, vol. 9, no. 7, 1397, 2019. https://doi.org/10.3390/app9071397</li>
<li>A. Elamim, S. Sarikh, B. Hartiti, A. Benazzouz, S. Elhamaoui, and A. Ghennioui, “Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate”, <em>Energy Reports</em>, vol. 11, pp. 2346–2359, 2024. https://doi.org/10.1016/j.egyr.2024.01.078</li>
<li>A. A. Babatunde, S. Abbasoglu, and M. Senol, “Analysis of the impact of dust, tilt angle and orientation on performance of PV plants”, <em>Renewable and Sustainable Energy Reviews</em>, vol. 90, pp. 1017–1026, 2018. https://doi.org/10.1016/j.rser.2018.03.102</li>
<li>İ. Kayri and M. T. Bayar, “A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks”, <em>Journal of Cleaner Production</em>, vol. 434, 140282, 2023. https://doi.org/10.1016/j.jclepro.2023.140282</li>
<li>S. Hossain, A. M. Arika, I. N. Fahim, J. Uddin, A. Ahmed, H. J. Apon, and M. A. Hoque, “Enhancing solar panel performance: A machine learning approach to dust detection and automated water sprinkle-based cleaning strategy”, <em>Solar Energy</em>, vol. 287, 113240, 2025. https://doi.org/10.1016/j.solener.2025.113240</li>
<li>M. Ma, Z. Li, W. Ma, R. Zhang, and X. Zhou, “Comprehensive investigation for power degradation of dust-covered photovoltaic modules based on the overlap model: A case study”, <em>Solar Energy</em>, vol. 291, 113389, 2025. https://doi.org/10.1016/j.solener.2025.113389</li>
<li>M. H. Qais, H. M. Hasanein, and S. Alghuwainem, “Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm”, <em>Applied Energy</em>, vol. 250, pp. 109–117, 2019. https://doi.org/10.1016/j.apenergy.2019.05.013</li>
<li>J. F. Gaviria, G. Narváez, C. Guillen, L. F. Giraldo, and M. Bressan, “Machine learning in photovoltaic systems: A review”, <em>Renewable Energy</em>, vol. 196, pp. 298–318, 2022. https://doi.org/10.1016/j.renene.2022.06.015</li>
<li>R. A. A. Ramadhan, Y. R. J. Heatubun, S. F. Tan, and H.-J. Lee, “Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power”, <em>Renewable Energy</em>, vol. 178, pp. 1006–1019, 2021. https://doi.org/10.1016/j.renene.2021.06.079</li>
<li>H. Long, Z. Zhang, and Y. Su, “Analysis of daily solar power prediction with data-driven approaches”, <em>Applied Energy</em>, vol. 126, pp. 29–37, 2014. https://doi.org/10.1016/j.apenergy.2014.03.084</li>
<li>A. J. Smola and B. Schölkopf, “A tutorial on support vector regression”, <em>Statistics and Computing</em>, vol. 14, pp. 199–222, 2004. https://doi.org/10.1023/B:STCO.0000035301.49549.88</li>
<li>V. N. Vapnik, <em>The Nature of Statistical Learning Theory</em>, 2nd edition. New York, NY: Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4757-3264-1</li>
<li>T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in <em>Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining</em>, San Francisco, CA, USA, 2016, pp. 785–794. https://doi.org/10.1145/2939672.2939785</li>
<li>M. Jobayer, M. A. H. Shaikat, M. N. Rashid, and M. R. Hasan, “A systematic review on predicting PV system parameters using machine learning”, <em>Heliyon</em>, vol. 9, e16815, 2023. https://doi.org/10.1016/j.heliyon.2023.e16815</li>
<li>S. G. Gouda, Z. Hussein, S. Luo, and Q. Yuan, “Model selection for accurate daily global solar radiation prediction in China”, <em>Journal of Cleaner Production</em>, vol. 221, pp. 132–144, 2019. https://doi.org/10.1016/j.jclepro.2019.02.211</li>
<li>S. T. Asiedu, F. K. A. Nyarko, S. Boahen, F. B. Effah, and B. A. Asaaga, “Machine learning forecasting of solar PV production using single and hybrid models over different time horizons”, <em>Heliyon</em>, vol. 10, no. 7, e28898, 2024. https://doi.org/10.1016/j.heliyon.2024.e28898</li>
