Machine learning-based estimation of power output in solar photovoltaic systems under real-world conditions

Kim Anh Nguyen1, Doan Tuan Hung Do1, Hoang Khoa Trinh1, Ngoc Khai Nguyen1, Ngoc Bao Doan1
1The University of Danang - University of Science and Technology, Vietnam

Tóm tắt

Precise prediction of DC power output from photovoltaic (PV) systems under real conditions is essential for improving efficiency and detecting degradation. This paper presents a machine learning framework to forecast PV power using electrical signals (e.g., voltage and current) and environmental data (irradiance and temperature). Three regression models -eXtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Artificial Neural Networks (ANN) - were trained on 13,923 samples from a 455.4 kWp solar PV plant in central Vietnam. The XGBoost model delivered the best performance with R² = 0.9998, mean absolute error (MAE) = 1.62 kWh, and root mean square error (RMSE) = 2.209 kWh, outperforming conventional methods. Additionally, the low computational demand of the developed model allows implementation on affordable hardware platforms, such as Raspberry Pi 4, enabling practical real-time monitoring and timely detection of PV performance degradation due to factors like panel defects, natural aging, and dust accumulation.

Từ khóa


Tài liệu tham khảo

<li>D. C. Jordan, S. R. Kurtz, K. VanSant, and J. Newmiller, “Compendium of photovoltaic degradation rates”, <em>Progress in Photovoltaics: Research and Applications</em>, vol. 24, no. 7, pp. 978–989, 2016. https://doi.org/10.1002/pip.2744</li>

<li>Y. Chen, Y. Liu, Z. Tian, Y. Dong, Y. Zhou, X. Wang, and D. Wang, “Experimental study on the effect of dust deposition on photovoltaic panels”, <em>Energy Procedia</em>, vol. 158, pp. 483–489, 2019. https://doi.org/10.1016/j.egypro.2019.01.139</li>

<li>S. A. Sadat, J. Faraji, M. Naziffard, and A. Ketabi, “The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment”, <em>Sustainable Energy Technologies and Assessments</em>, vol. 47, 2021. https://doi.org/10.1016/j.seta.2021.101542</li>

<li>M. Rashid, M. Yousif, Z. Rashid, A. Muhammad, M. Altaf, and A. Mustafa, “Effect of dust accumulation on the performance of photovoltaic modules for different climate regions”, <em>Heliyon</em>, vol. 9, no. 12, e23069, 2023. https://doi.org/10.1016/j.heliyon.2023.e23069</li>

<li>Z. A. Darwish, K. Sopian, and A. Fudholi, “Reduced output of photovoltaic modules due to different types of dust particles”, <em>Journal of Cleaner Production</em>, vol. 280, 124317, 2021. https://doi.org/10.1016/j.jclepro.2020.124317</li>

<li>T. M. A. Alnasser, A. M. J. Mahdy, K. I. Abass, M. T. Chaichan, and H. A. Kazem, “Impact of dust ingredient on photovoltaic performance: An experimental study”, <em>Solar Energy</em>, vol. 195, pp. 651–659, 2020. https://doi.org/10.1016/j.solener.2019.12.008</li>

<li>A. A. Hachicha, I. Al-Sawafta, and Z. Said, “Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions”, <em>Renewable Energy</em>, vol. 141, pp. 287–297, 2019. https://doi.org/10.1016/j.renene.2019.04.004</li>

<li>Y. Shen, M. Fouladjiard, and A. Grall, “Impact of dust and temperature on photovoltaic panel performance: A model-based approach to determine optimal cleaning frequency”, <em>Heliyon</em>, vol. 10, e25390, 2024. https://doi.org/10.1016/j.heliyon.2024.e25390</li>

<li>W. Al-Kouz, S. Al-Dahidi, B. Hammad, and M. Al-Abed, “Modeling and analysis framework for investigating the impact of dust and temperature on PV systems’ performance and optimum cleaning frequency”, <em>Applied Sciences</em>, vol. 9, no. 7, 1397, 2019. https://doi.org/10.3390/app9071397</li>

<li>A. Elamim, S. Sarikh, B. Hartiti, A. Benazzouz, S. Elhamaoui, and A. Ghennioui, “Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate”, <em>Energy Reports</em>, vol. 11, pp. 2346–2359, 2024. https://doi.org/10.1016/j.egyr.2024.01.078</li>

<li>A. A. Babatunde, S. Abbasoglu, and M. Senol, “Analysis of the impact of dust, tilt angle and orientation on performance of PV plants”, <em>Renewable and Sustainable Energy Reviews</em>, vol. 90, pp. 1017–1026, 2018. https://doi.org/10.1016/j.rser.2018.03.102</li>

<li>İ. Kayri and M. T. Bayar, “A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks”, <em>Journal of Cleaner Production</em>, vol. 434, 140282, 2023. https://doi.org/10.1016/j.jclepro.2023.140282</li>

<li>S. Hossain, A. M. Arika, I. N. Fahim, J. Uddin, A. Ahmed, H. J. Apon, and M. A. Hoque, “Enhancing solar panel performance: A machine learning approach to dust detection and automated water sprinkle-based cleaning strategy”, <em>Solar Energy</em>, vol. 287, 113240, 2025. https://doi.org/10.1016/j.solener.2025.113240</li>

<li>M. Ma, Z. Li, W. Ma, R. Zhang, and X. Zhou, “Comprehensive investigation for power degradation of dust-covered photovoltaic modules based on the overlap model: A case study”, <em>Solar Energy</em>, vol. 291, 113389, 2025. https://doi.org/10.1016/j.solener.2025.113389</li>

<li>M. H. Qais, H. M. Hasanein, and S. Alghuwainem, “Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm”, <em>Applied Energy</em>, vol. 250, pp. 109–117, 2019. https://doi.org/10.1016/j.apenergy.2019.05.013</li>

<li>J. F. Gaviria, G. Narváez, C. Guillen, L. F. Giraldo, and M. Bressan, “Machine learning in photovoltaic systems: A review”, <em>Renewable Energy</em>, vol. 196, pp. 298–318, 2022. https://doi.org/10.1016/j.renene.2022.06.015</li>

<li>R. A. A. Ramadhan, Y. R. J. Heatubun, S. F. Tan, and H.-J. Lee, “Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power”, <em>Renewable Energy</em>, vol. 178, pp. 1006–1019, 2021. https://doi.org/10.1016/j.renene.2021.06.079</li>

<li>H. Long, Z. Zhang, and Y. Su, “Analysis of daily solar power prediction with data-driven approaches”, <em>Applied Energy</em>, vol. 126, pp. 29–37, 2014. https://doi.org/10.1016/j.apenergy.2014.03.084</li>

<li>A. J. Smola and B. Schölkopf, “A tutorial on support vector regression”, <em>Statistics and Computing</em>, vol. 14, pp. 199–222, 2004. https://doi.org/10.1023/B:STCO.0000035301.49549.88</li>

<li>V. N. Vapnik, <em>The Nature of Statistical Learning Theory</em>, 2nd edition. New York, NY: Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4757-3264-1</li>

<li>T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in <em>Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining</em>, San Francisco, CA, USA, 2016, pp. 785–794. https://doi.org/10.1145/2939672.2939785</li>

<li>M. Jobayer, M. A. H. Shaikat, M. N. Rashid, and M. R. Hasan, “A systematic review on predicting PV system parameters using machine learning”, <em>Heliyon</em>, vol. 9, e16815, 2023. https://doi.org/10.1016/j.heliyon.2023.e16815</li>

<li>S. G. Gouda, Z. Hussein, S. Luo, and Q. Yuan, “Model selection for accurate daily global solar radiation prediction in China”, <em>Journal of Cleaner Production</em>, vol. 221, pp. 132–144, 2019. https://doi.org/10.1016/j.jclepro.2019.02.211</li>

<li>S. T. Asiedu, F. K. A. Nyarko, S. Boahen, F. B. Effah, and B. A. Asaaga, “Machine learning forecasting of solar PV production using single and hybrid models over different time horizons”, <em>Heliyon</em>, vol. 10, no. 7, e28898, 2024. https://doi.org/10.1016/j.heliyon.2024.e28898</li>