Machine learning based approaches for detecting COVID-19 using clinical text data

Akib Mohi Ud Din Khanday1, Syed Tanzeel Rabani1, Qamar Rayees Khan1, Nusrat Rouf1, Masarat Mohi Ud Din2
1Department of Computer Sciences, Baba Ghulam Shah Badshah University, Rajouri, 185234, Jammu and Kashmir, India
2Government Medical College, Srinagar, 190010, Jammu and Kashmir, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in china. Nature 44(59):265–269

Medscape Medical News, The WHO declares public health emergency for novel coronavirus (2020) https://www.medscape.com/viewarticle/924596

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513

World health organization: https://www.who.int/new-room/g-a-detail/q-a-corronaviruses#:/text=symptoms. Accessed 10 Apr 2020

Wikipedia coronavirus Pandemic data: https://en.m.wikipedia.org/wiki/Template:2019%E2%80%9320_coronavirus_pandemic_data. Accessed 10 Apr 2020

Khanday, A.M.U.D., Amin, A., Manzoor, I., & Bashir, R., “Face Recognition Techniques: A Critical Review” 2018

Kumar A, Dabas V, Hooda P (2018) Text classification algorithms for mining unstructured data: a SWOT analysis. Int J Inf Technol. https://doi.org/10.1007/s41870-017-0072-1

Verma P, Khanday AMUD, Rabani ST, Mir MH, Jamwal S (2019) Twitter Sentiment Analysis on Indian Government Project using R. Int J Recent Tech Eng. https://doi.org/10.35940/ijrte.C6612.098319

Chakraborti S, Choudhary A, Singh A et al (2018) A machine learning based method to detect epilepsy. Int J Inf Technol 10:257–263. https://doi.org/10.1007/s41870-018-0088-1

Sarwar A, Ali M, Manhas J et al (2018) Diagnosis of diabetes type-II using hybrid machine learning based ensemble model. Int J Inf Technol. https://doi.org/10.1007/s41870-018-0270-5

Bullock J, Luccioni A, Pham KH, Lam CSN, Luengo-Oroz M (2020) Mapping the landscape of artificial intelligence applications against COVID-19. https://arxiv.org/abs/2003.11336v1

Wang L, Wong A (2020) COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 Cases from chest radiography images. https://arxiv.org/abs/2003.09871

Yan L, Zhang H-T, Xiao Y, Wang M, Sun C, Liang J, Li S, Zhang M, Guo Y, Xiao Y, Tang X, Cao H, Tan X, Huang N, Amd A, Luo BJ, Cao Z, Xu H, Yuan Y (2020) Prediction of criticality in patients with severe covid-19 Infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. medRxiv. https://doi.org/10.1101/2020.02.27.20028027

Jiang X, Coffee M, Bari A, Wang J, Jiang X, Huang J, Shi J, Dai J, Cai J, Zhang T, Wu Z, He G, Huang Y (2020) Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Compu Mater Contin 63(1):537–551

Description of Logistic Regression Algorithm. https://machinelearningmastery.com/logistic-regression-for-machine-learning/. Accessed 15 May 2019

Description of Multinomial Naïve Bayes Algorithm https://www.3pillarglobal.com/insights/document-classification-using-multinomial-naive-bayes-classifier. Accessed 15 May 2019

Khanday AMUD, Khan QR, Rabani ST. SVMBPI: support vector machine based propaganda identification. SN Appl. Sci. (accepted)

Description of Decision Tree Algorithm: https://dataspirant.com/2017/01/30/how_decision_tree_algorithm_works/. Accessed 10 July 2019

Description of Boosting Algorithm: https://towardsdatascience.com/boosting. Accessed 10 July 2019

Description of Adaboost Algorithm: https://towardsdatascience.com/boosting-algorithm-adaboost-b673719ee60c. Accessed 10 July 2019

Katuwal R, Suganthan PN (2018) Enhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces, Arxiv:1802.01240v1

Friedman JH (2002) Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4):367–378. https://doi.org/10.1016/S0167-9473(01)00065-2