Machine learning approach for pavement performance prediction

International Journal of Pavement Engineering - Tập 22 Số 3 - Trang 341-354 - 2021
Pedro Marcelino1, Maria de Lurdes Antunes1, Eduardo Fortunato1, Marta Castilho Gomes2
1National Laboratory for Civil Engineering, Lisbon, Portugal
2CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1111/0885-9507.00219

10.1080/07474938.2010.481556

10.1080/00031305.1992.10475879

10.1162/neco.1996.8.3.643

10.1016/S0169-2070(00)00072-8

Bergstra J., 2012, Journal of Machine Learning Research, 13, 281

10.1111/j.1467-8667.2009.00615.x

Bontempi G., 2012, European business intelligence summer school, 62

10.1002/9781119183600

Box G.E.P., 1970, Time series analysis, forecasting and control

10.1023/A:1010933404324

Caruana, R., and Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, 161–168.

Ceylan H., 2014, International Journal of Pavement Research and Technology, 7, 434

10.1016/j.ijforecast.2003.10.004

10.1016/j.ijforecast.2011.04.001

10.1061/JPEODX.0000003

Darrell, T. et al., 2015. Machine learning with interdependent and non-identically distributed data. Dagstuhl Reports, 5 (4). Schloss Dagstuhl.

10.1016/j.ijforecast.2006.01.001

10.1016/S0378-4371(00)00215-6

10.1007/3-540-45014-9_1

10.1016/j.trb.2006.08.002

10.1214/aos/1176344552

10.1162/neco.1992.4.1.1

Goodfellow I., 2016, Deep learning

Gulen, S. et al., 2001. Development of improved pavement performance prediction models for the Indiana pavement management system. Final Report. Indiana Department of Transportation.

Guo M., 1999, Statistica Sinica, 9, 559

10.1007/978-3-540-35488-8_1

10.1002/9781119038849

Hair J.F., 1998, Multivariate data analysis

Harvey A.C, 1993, Time series models

Haykin S., 1994, Neural networks: a comprehensive foundation

10.1023/B:AIRE.0000045502.10941.a9

10.1007/978-1-4614-7138-7

10.1126/science.aaa8415

10.1186/1471-2105-15-276

10.1061/(ASCE)TE.1943-5436.0000779

10.3141/2155-14

10.1016/S0925-2312(03)00372-2

Kotsiantis S.B., 2006, International Journal of Computer Science, 1, 111

Lin J.D., 2003, Proceedings of the 82nd annual meeting of the transportation research board, 101

10.1109/TNN.2007.915114

Long-Term Pavement Performance (LTPP), 2018. LTPP DataPave online [dataset]. Available from: https://infopave.fhwa.dot.gov/ [Accessed 20 Mar 2018].

Marcelino P., 2018, Structure and Infrastructure Engineering, 1

10.1016/j.jtte.2016.09.007

Murphy K., 2012, Machine learning: A probabilistic perspective

Nassiri S., 2013, International Journal of Pavement Research and Technology, 6, 714

Pedregosa F., 2011, Journal of Machine Learning Research, 12, 2825

Perera, R.W., Byrum, C., and Kohn, S.D, 1998. Investigation of development of pavement roughness. Technical Report FHWA-RD-97-417. Federal Highway Administration.

Perera, R.W., and Kohn, S.D, 2001. LTPP data analysis: factors affecting pavement smoothness. NCHRP Project 20-50 (8/13). Transportation Research Board.

10.1016/0169-2070(86)90033-6

Raschka S., 2015, Python machine learning

Sayers M.W., 1998, The little book of profiling

Schmitt P., 2015, Journal of Biometrics and Biostatistics, 6, 224

10.1023/B:STCO.0000035301.49549.88

Srivastava N., 2014, Journal of Machine Learning Research, 15, 1929

10.1093/bioinformatics/btr597

10.1016/j.eswa.2012.01.039

10.1016/0304-4149(86)90099-2

Tong H., 2012, Threshold models in non-linear time series analysis

Uddin W., 2013, Public infrastructure asset management

10.1186/1471-2105-7-91

Wan L., 2013, Proceedings of the 30th international conference on machine learning, 1058

Yang, J., Lu, J.J., and Gunaratne, M, 2003. Application of neural network models for forecasting pavement crack index and pavement condition rating. Final Report. University of South Florida.

10.3141/2589-15

10.1080/10298436.2015.1019498

10.1080/14680629.2015.1108218