Machine learning applications in genetics and genomics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mitchell, T. Machine Learning (McGraw-Hill, 1997). This book provides a general introduction to machine learning that is suitable for undergraduate or graduate students.
Ohler, W., Liao, C., Niemann, H. & Rubin, G. M. Computational analysis of core promoters in the Drosophila genome. Genome Biol. 3, RESEARCH0087 (2002).
Degroeve, S., Baets, B. D., de Peer, Y. V. & Rouzé, P. Feature subset selection for splice site prediction. Bioinformatics 18, S75–S83 (2002).
Bucher, P. Weight matrix description of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 4, 563–578 (1990).
Heintzman, N. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).
Picardi, E. & Pesole, G. Computational methods for ab initio and comparative gene finding. Methods Mol. Biol. 609, 269–284 (2010).
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000).
Fraser, A. G. & Marcotte, E. M. A probabilistic view of gene function. Nature Genet. 36, 559–564 (2004).
Karlic, R. R. Chung, H., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).
Ouyang, Z., Zhou, Q. & Wong, H. W. ChIP–seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl Acad. Sci. USA 106, 21521–21526 (2009).
Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, 2001). This book provides an overview of machine learning that is suitable for students with a strong background in statistics.
Hamelryck, T. Probabilistic models and machine learning in structural bioinformatics. Stat. Methods Med. Res. 18, 505–526 (2009).
Swan, A. L., Mobasheri, A., Allaway, D., Liddell, S. & Bacardit, J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS 17, 595–610 (2013).
Upstill-Goddard, R., Eccles, D., Fliege, J. & Collins, A. Machine learning approaches for the discovery of gene–gene interactions in disease data. Brief. Bioinform. 14, 251–260 (2013).
Yip, K. Y., Cheng, C. & Gerstein, M. Machine learning and genome annotation: a match meant to be? Genome Biol. 14, 205 (2013).
Day, N., Hemmaplardh, A., Thurman, R. E., Stamatoyannopoulos, J. A. & Noble, W. S. Unsupervised segmentation of continuous genomic data. Bioinformatics 23, 1424–1426 (2007).
Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nature Methods 9, 215–216 (2012). This study applies an unsupervised hidden Markov model algorithm to analyse genomic assays such as ChIP–seq and DNase-seq in order to identify new classes of functional elements and new instances of existing functional element types.
Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nature Methods 9, 473–476 (2012).
Stamatoyannopoulos, J. A. Illuminating eukaryotic transcription start sites. Nature Methods 7, 501–503 (2010).
Boser, B. E., Guyon, I. M. & Vapnik, V. N. in A Training Algorithm for Optimal Margin Classifiers (ed. Haussler, D.) 144–152 (ACM Press, 1992). This paper was the first to describe the SVM, a type of discriminative classification algorithm.
Noble, W. S. What is a support vector machine? Nature Biotech. 24, 1565–1567 (2006). This paper describes a non-mathematical introduction to SVMs and their applications to life science research.
Ng, A. Y. & Jordan, M. I. Advances in Neural Information Processing Systems (eds Dietterich, T. et al.) (MIT Press, 2002).
Jordan, M. I. Why the logistic function? a tutorial discussion on probabilities and neural networks. Computational Cognitive Science Technical Report 9503 [online] , (1995).
Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997). This paper provides a mathematical proof that no single machine learning method can perform best on all possible learning problems.
Yip, K. Y. et al. Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol. 13, R48 (2012).
Urbanowicz, R. J., Granizo-Mackenzie, D. & Moore, J. H. in Proceedings of the Parallel Problem Solving From Nature 266–275 (Springer, 2012).
Brown, M. et al. in Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology (ed. Rawlings, C.) 47–55 (AAAI Press, 1993).
Bailey, T. L. & Elkan, C. P. in Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology (eds Rawlings, C. et al.) 21–29 (AAAI Press, 1995).
Schölkopf, B. & Smola, A. Learning with Kernels (MIT Press, 2002).
Leslie, C. et al. (eds) Proceedings of the Pacific Symposium on Biocomputing (World Scientific, 2002).
Rätsch, G. & Sonnenburg, S. in Kernel Methods in Computational Biology (eds Schölkopf, B. et al.) 277–298 (MIT Press, 2004).
Zien, A. et al. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799–807 (2000).
Saigo, H., Vert, J.-P. & Akutsu, T. Optimizing amino acid substitution matrices with a local alignment kernel. BMC Bioinformatics 7, 246 (2006).
Jaakkola, T. & Haussler, D. Advances in Neural Information Processing Systems 11 (Morgan Kauffmann, 1998).
Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (Cambridge Univ. Press, 2004). This textbook describes kernel methods, including a detailed mathematical treatment that is suitable for quantitatively inclined graduate students.
Peña-Castillo, L. et al. A critical assessment of M. musculus gene function prediction using integrated genomic evidence. Genome Biol. 9, S2 (2008).
Sonnhammer, E., Eddy, S. & Durbin, R. Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 405–420 (1997).
Apweiler, R. et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37–40 (2001).
Pavlidis, P., Weston, J., Cai, J. & Noble, W. S. Learning gene functional classifications from multiple data types. J. Computat. Biol. 9, 401–411 (2002).
Lanckriet, G. R. G., Bie, T. D., Cristianini, N., Jordan, M. I. & Noble, W. S. A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004).
Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B. & Botstein, D. A. Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl Acad. Sci. USA 100, 8348–8353 (2003).
Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1998). This textbook on probability models for machine learning is suitable for undergraduates or graduate students.
Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor Protoc. 2, pdb.prot5384 (2010).
Wasson, T. & Hartemink, A. J. An ensemble model of competitive multi-factor binding of the genome. Genome Res. 19, 2102–2112 (2009).
Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011).
Cuellar-Partida, G. et al. Epigenetic priors for identifying active transcription factor binding sites. Bioinformatics 28, 56–62 (2011).
Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).
Glaab, E., Bacardit, J., Garibaldi, J. M. & Krasnogor, N. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS ONE 7, e39932 (2012).
Tibshirani, R. J. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267–288 (1996). This paper was the first to describe the technique known as lasso (or L 1 regularization), which performs feature selection in conjunction with learning.
Urbanowicz, R. J., Granizo-Mackenzie, A. & Moore, J. H. An analysis pipeline with statistical and visualization-guided knowledge discovery for Michigan-style learning classifier systems. IEEE Comput. Intell. Mag. 7, 35–45 (2012).
Tikhonov, A. N. On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943). This paper was the first to describe the now-ubiquitous method known as L 2 regularization or ridge regression.
Keogh, E. & Mueen, A. Encyclopedia of Machine Learning (Springer, 2011).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Manning, C. D. & Schütze, H. Foundations of Statistical Natural Language Processing (MIT Press, 1999).
Davis, J. & Goadrich, M. Proceedings of the International Conference on Machine Learning (ACM, 2006). This paper provides a succinct introduction to precision-recall and receiver operating characteristic curves, and details under which scenarios these approaches should be used.
Cohen, J. Weighted κ: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70, 213 (1968).
Luengo, J., García, S. & Herrera, F. On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl. Inf. Syst. 32, 77–108 (2012).
Troyanskaya, O. et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001). This study uses an imputation-based approach to handle missing values in microarray data. The method was widely used in subsequent studies to address this common problem.
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genet. 46, 310–315 (2014). This study uses a machine learning approach to estimate the pathogenicity of genetic variants using a framework that takes advantage of the fact that natural selection removes deleterious variation.
Qiu, J. & Noble, W. S. Predicting co-complexed protein pairs from heterogeneous data. PLoS Comput. Biol. 4, e1000054 (2008).
Friedman, N., Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).
Bacardit, J. & Llorà, X. Large-scale data mining using genetics-based machine learning. Wiley Interdiscip. Rev. 3, 37–61 (2013).
Koski, T. J. & Noble, J. A review of Bayesian networks and structure learning. Math. Applicanda 40, 51–103 (2012).
Pearl, J. Causality: Models, Reasoning and Inference (Cambridge Univ. Press, 2000).