Machine learning aided Android malware classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boxall, 2015
Dehghantanha, 2014, Privacy-respecting digital investigation, 129
Walls, 2015, A review of free cloud-based anti-malware apps for android, 1053
Kitagawa, 2015, Market share: final pcs, ultramobiles and mobile phones, all countries, 2q15 update
Chia, 2017, How cyber-savvy are older mobile device users?, 67
Viennot, 2014, A measurement study of google play, 42, 221
Schmidt, 2009, Detecting symbian os malware through static function call analysis, 15
Buennemeyer, 2008, Mobile device profiling and intrusion detection using smart batteries
Enck, 2014, Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones, ACM Trans Comput Syst (TOCS), 32, 5, 10.1145/2619091
Canfora, 2015, Mobile malware detection using op-code frequency histograms
Dash, 2016, Droidscribe: classifying android malware based on runtime behavior, Mobile Secur Technol (MoST 2016), 7148, 1
Alam, 2013, Random forest classification for detecting android malware, 663
Isohara, 2011, Kernel-based behavior analysis for android malware detection, 1011
Damshenas, 2015, M0droid: an android behavioral-based malware detection model, J Inf Privacy Secur, 11, 141, 10.1080/15536548.2015.1073510
Mercaldo, 2016, Download malware? No, thanks: how formal methods can block update attacks, 22
Karbab, 2016, Fingerprinting android packaging: generating dnas for malware detection, Digital Invest, 18, S33, 10.1016/j.diin.2016.04.013
Nataraj, 2011, Malware images: visualization and automatic classification, 4
Nath, 2014, Static malware analysis using machine learning methods, Recent Trends Comput Netw Distrib Syst Secur, 440, 10.1007/978-3-642-54525-2_39
Afonso, 2015, Identifying android malware using dynamically obtained features, J Comput Virol Hacking Tech, 11, 9, 10.1007/s11416-014-0226-7
Yerima, 2015, Android malware detection: an eigenspace analysis approach, 1236
Sahs, 2012, A machine learning approach to android malware detection, 141
Benjamin, 2013, Machine learning for attack vector identification in malicious source code, 21
Hersh, 2005, Evaluation of biomedical text-mining systems: lessons learned from information retrieval, Brief Bioinform, 6, 344, 10.1093/bib/6.4.344
Kolter, 2006, Learning to detect and classify malicious executables in the wild, J Mach Learn Res, 7, 2721
Cyveillance, 2010