Machine Learning in Medicine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Institute of Medicine. Crossing the quality chasm: a new health system for the twenty-first century. Washington DC: National Academies Press 2001.
Lasic M. Case study: an insulin overdose. Institute for Healthcare Improvement (http://www.ihi.org/education/IHIOpenSchool/resources/Pages/Activities/AnInsulinOverdose.aspx).
Institute of Medicine. To err is human: building a safer health system. Washington DC: National Academies Press 2000.
National Academies of Sciences Engineering and Medicine. Improving diagnosis in health care. Washington DC: National Academies Press 2016.
Goodfellow I Bengio Y Courville A Bengio Y. Deep learning. Cambridge MA: MIT Press 2016.
Clark J. Google turning its lucrative Web search over to AI machines.Bloomberg News. October 26 2015 (https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines).
Johnson M Schuster M Le QV et al. Google’s multilingual neural machine translation system: enabling zero-shot translation. arXiv. November 14 2016 (http://arxiv.org/abs/1611.04558).
Bahdanau D Cho K Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv. September 1 2014 (http://arxiv.org/abs/1409.0473).
Rajkomar A Oren E Chen K et al. Scalable and accurate deep learning for electronic health records. arXiv. January 24 2018 (http://arxiv.org/abs/1801.07860).
Institute of Medicine National Academies of Sciences Engineering and Medicine. Improving diagnosis in health care. Washington DC: National Academies Press 2016.
Ross C Swetlitz I Thielking M et al. IBM pitched Watson as a revolution in cancer care: it’s nowhere close. Boston: STAT September 5 2017 (https://www.statnews.com/2017/09/05/watson-ibm-cancer/).
Institute of Medicine. The learning healthcare system: workshop summary. Washington DC: National Academies Press 2007.
Institute of Medicine. Unequal treatment: confronting racial and ethnic disparities in health care. Washington DC: National Academies Press 2003.
Jiang H, Kim B, Guan M, Gupta M. To trust or not to trust a classifier. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, eds. Advances in neural information processing systems 31. New York: Curran Associates, 2018:5541-52.
arXiv.org Home page (https://arxiv.org/).
bioRxiv. bioRxiv: The preprint server for biology (https://www.biorxiv.org/).