Machine Learning in Economics and Finance

Periklis Gogas1, Theophilos Papadimitriou1
1Department of Economics, Democritus University of Thrace, Komotini, Greece

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexakis, C., Dowling, M., Eleftheriou, K., et al. (2020). Textual machine learning: An application to computational economics research. Computational Economics. https://doi.org/10.1007/s10614-020-10077-3.

Babaei, G., & Bambad, S. (2020). A new hybrid instance-based learning model for decision-making in the P2P lending market. Computational Economics. https://doi.org/10.1007/s10614-020-10085-3.

Bouri, E., Gkillas, K., Gupta, R., et al. (2020). Forecasting realized volatility of bitcoin: The role of the trade war. Computational Economics. https://doi.org/10.1007/s10614-020-10022-4.

Bussmann, N., Giudici, P., Marinelli, D., et al. (2020). Explainable machine learning in credit risk management. Computational Economics. https://doi.org/10.1007/s10614-020-10042-0.

Chakraborty, T., Chakraborty, A. K., Biswas, M., et al. (2020). Unemployment rate forecasting: A hybrid approach. Computational Economics. https://doi.org/10.1007/s10614-020-10040-2.

Chen, T. H., Chen, M. Y., & Du, G. T. (2020). The determinants of bitcoin’s price: Utilization of GARCH and machine learning approaches. Computational Economics. https://doi.org/10.1007/s10614-020-10057-7.

Duarte, J. J., Montenegro González, S., & Cruz, J. C. (2020). Predicting stock price falls using news data: Evidence from the Brazilian market. Computational Economics. https://doi.org/10.1007/s10614-020-10060-y.

Kline, R. R. (2011). Cybernetics, automata studies and the dartmouth conference on artificial intelligence. In IEEE Annals of the History of Computing, October–December. IEEE Computer Society.

Lee, S. C., & Lee, E. (1974). Fuzzy sets and neural networks. Journal of Cybernetics, 4(2), 83–103. https://doi.org/10.1080/01969727408546068.

Lima, L. R., Godeiro, L. L., & Mohsin, M. (2020). Time-varying dictionary and the predictive power of FED minutes. Computational Economics. https://doi.org/10.1007/s10614-020-10039-9.

Lussange, J., Lazarevich, I., Bourgeois-Gironde, S., et al. (2020). Modelling stock markets by multi-agent reinforcement learning. Computational Economics. https://doi.org/10.1007/s10614-020-10038-w.

Mitchell, T. (1997). Machine Learning (p. 2). New York: McGraw Hill. ISBN 978-0-07-042807-2

Pesantez-Narvaez, J., Guillen, M., & Alcañiz, M. (2020). A synthetic penalized logitboost to model mortgage lending with imbalanced data. Computational Economics. https://doi.org/10.1007/s10614-020-10059-5.

Plakandaras, V., Gogas, P., & Papadimitriou, T. (2020). Gold against the machine. Computational Economics. https://doi.org/10.1007/s10614-020-10019-z.

Soybilgen, B., & Yazgan, E. (2020). Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors. Computational Economics. https://doi.org/10.1007/s10614-020-10083-5.

Syriopoulos, T., Tsatsaronis, M., & Karamanos, I. (2020). Support vector machine algorithms: An application to ship price forecasting. Computational Economics. https://doi.org/10.1007/s10614-020-10032-2.

Triepels, R., Daniels, H., & Berndsen, R. (2020). Monitoring liquidity management of banks with recurrent neural networks. Computational Economics. https://doi.org/10.1007/s10614-020-10067-5.

Tsagris, M. (2020). A new scalable Bayesian network learning algorithm with applications to economics. Computational Economics. https://doi.org/10.1007/s10614-020-10065-7.

Wang, H., Li, C., Gu, B., & Min, W. (1984). “Does AI-based credit scoring improve financial inclusion? Evidence from online payday lending”. In 40th international conference on information systems. ICIS 2019.

White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns. In IEEE 1988 international conference on neural networks, San Diego, CA, USA (vol. 2, pp. 451–458). https://doi.org/10.1109/ICNN.1988.23959.

Yilmaz, F. M., & Arabaci, O. (2020). Should deep learning models be in high demand, or should they simply be a very hot topic? A comprehensive study for exchange rate forecasting. Computational Economics. https://doi.org/10.1007/s10614-020-10047-9.

Yoon, J. (2020). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics. https://doi.org/10.1007/s10614-020-10054-w.