Machine Learning for Organic Photovoltaic Polymers: A Minireview
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mahmood, A.; Irfan, A.; Wang, J. L. Developing efficient small molecule acceptors with sp2-hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem. Eur. J. 2022, 28, e202103712.
Rasool, A.; Zahid, S.; Ans, M.; Iqbal, J.; Adnan, M.; Sherif, E. S. M.; Al-Buriahi, M. S. Synergistic engineering of end-capped acceptor and bridge on arylborane-arylamine macrocycles to boost the photovoltaic properties of organic solar cells. Opt. Mater. 2022, 123, 111907.
Mahmood, A.; Wang, J. L. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J. Mater. Chem. A 2021, 9, 15684–15695.
Mahmood, A.; Irfan, A.; Wang, J. L. Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J. Mater. Chem. A 2022, 10, 4170–4180.
Wang, J. L.; Liu, K. K.; Hong, L.; Ge, G. Y.; Zhang, C.; Hou, J. Selenopheno[3,2-b]thiophene-based narrow-bandgap nonfullerene acceptor enabling 13.3% efficiency for organic solar cells with thickness-insensitive feature. ACS Energy Lett. 2018, 3, 2967–2976.
Afzal, Q. Q.; Jaffar, K.; Ans, M.; Rafique, J.; Iqbal, J.; Shehzad, R. A.; Mahr, M. S. Designing benzothiadiazole based highly efficient non-fullerene acceptor molecules for organic solar cells. Polymer 2022, 238, 124405.
Ans, M.; Ayub, K.; Muhammad, S.; Iqbal, J. Development of fullerene free acceptors molecules for organic solar cells: a step way forward toward efficient organic solar cells. Comput. Theor. Chem. 2019, 1161, 26–38.
Zahid, S.; Rasool, A.; Shehzad, R. A.; Bhatti, I. A.; Iqbal, J. Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications. J. Mol. Model. 2021, 27, 237.
Sharif, A.; Jabeen, S.; Iqbal, S.; Iqbal, J. Tuning the optoelectronic properties of dibenzochrysene (DBC) based small molecules for organic solar cells. Mater. Sci. Semicond. Process. 2021, 127, 105689.
Zahid, S.; Rasool, A.; Ans, M.; Yaseen, M.; Iqbal, J. Quantum chemical approach of donor-π-acceptor based arylborane-arylamine macrocycles with outstanding photovoltaic properties toward high-performance organic solar cells. Energy & Fuels 2021, 35, 15018–15032.
Mahmood, A.; Irfan, A. Effect of fluorination on exciton binding energy and electronic coupling in small molecule acceptors for organic solar cells. Comput. Theor. Chem. 2020, 1179, 112797.
Mahmood, A.; Irfan, A. Computational analysis to understand the performance difference between two small-molecule acceptors differing in their terminal electron-deficient group. J. Comput. Electron. 2020, 19, 931–939.
Ans, M.; Iqbal, J.; Ayub, K.; Ali, E.; Eliasson, B. Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells. Mater. Sci. Semicond. Process. 2019, 94, 97–106.
Rasool, A.; Zahid, S.; Ans, M.; Muhammad, S.; Ayub, K.; Iqbal, J. Bithieno thiophene-based small molecules for application as donor materials for organic solar cells and hole transport materials for perovskite solar cells. ACS Omega 2022, 7, 844–862.
Mahmood, A.; Abdullah Muhammad, I.; Nazar Muhammad, F. Quantum chemical designing of novel organic non-linear optical compounds. Bull. Korean Chem. Soc. 2014, 35, 1391–1396.
Ahmad, F.; Mahmood, A.; Muhmood, T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater. Sci. 2021, 9, 1598–1608.
Mahmood, A. Photovoltaic and charge transport behavior of diketopyrrolopyrrole based compounds with A-D-A-D-A skeleton. J. Cluster Sci. 2019, 30, 1123–1130.
Mahmood, A.; Wang, J. L. Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ. Sci. 2021, 14, 90–105.
Shang, Z.; Zhou, L.; Sun, C.; Meng, L.; Lai, W.; Zhang, J.; Huang, W.; Li, Y. Non-equivalent D-A copolymerization strategy towards highly efficient polymer donor for polymer solar cells. Sci. China Chem. 2021, 64, 1031–1038.
Meng, B.; Wang, Z.; Ma, W.; Xie, Z.; Liu, J.; Wang, L. A cross-linkable donor polymer as the underlying layer to tune the active layer morphology of polymer solar cells. Adv. Funct. Mater. 2016, 26, 226–232.
Long, X.; Ding, Z.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Polymer acceptor based on double B←N bridged bipyridine (BNBP) unit for high-efficiency all-polymer solar cells. Adv. Mater. 2016, 28, 6504–6508.
Xu, J.; Feng, H.; Liang, Y.; Tang, H.; Tang, Y.; Du, Z.; Hu, Z.; Huang, F.; Cao, Y. N-alkyl chain modification in dithienobenzotriazole unit enabled efficient polymer donor for high-performance non-fullerene solar cells. J. Energy Chem. 2022, 66, 382–389.
Zhang, Z. G.; Bai, Y.; Li, Y. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 1–13.
Chen, D.; Liu, S.; Hu, X.; Wu, F.; Liu, J.; Zhou, K.; Ye, L.; Chen, L.; Chen, Y. Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. Sci. China Chem. 2022, 65, 182–189.
Wang, R.; Yao, Y.; Zhang, C.; Zhang, Y.; Bin, H.; Xue, L.; Zhang, Z.-G.; Xie, X.; Ma, H.; Wang, X.; Li, Y.; Xiao, M. Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nat. Commun. 2019, 10, 398.
Liu, S.; Li, H.; Wu, X.; Chen, D.; Zhang, L.; Meng, X.; Tan, L.; Hu, X.; Chen, Y. Pseudo-planar heterojunction organic photovoltaics with optimized light utilization for printable solar windows. Adv. Mater. 2022, DOI: https://doi.org/10.1002/adma.202201604.
Zhang, Y.; Wang, Y.; Ma, R.; Luo, Z.; Liu, T.; Kang, S.-H.; Yan, H.; Yuan, Z.; Yang, C.; Chen, Y. Wide band-gap two-dimension conjugated polymer donors with different amounts of chlorine substitution on alkoxyphenyl conjugated side chains for non-fullerene polymer solar cells. Chinese J. Polym. Sci. 2020, 38, 797–805.
Zhang, Z. G.; Li, Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.
Liu, Y. Q.; Zhi, H. F.; Bai, H. R.; Jiang, Z.; Wan, S. S.; Jiang, M.; Mahmood, A.; Yang, C.; Sun, S.; An, Q.; Wang, J. L. Two-dimensional conjugated benzo[1,2-b:4,5-b′]diselenophene-based copolymer donor enables large open-circuit voltage and high efficiency in selenophene-based organic solar cells. ChemSusChem 2021, 14, 4454–4465.
Wang, T.; Sun, R.; Yang, X. R.; Wu, Y.; Wang, W.; Li, Q.; Zhang, C. F.; Min, J. A near-infrared polymer acceptor enables over 15% efficiency for all-polymer solar cells. Chinese J. Polym. Sci. 2022, DOI: https://doi.org/10.1007/s10118-022-2697-1.
Yin, B.; Chen, Z.; Pang, S.; Yuan, X.; Liu, Z.; Duan, C.; Huang, F.; Cao, Y. The renaissance of oligothiophene-based donor-acceptor polymers in organic solar cells. Adv. Energy Mater. n/a, 2104050.
Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. n-Type organic semiconductors in organic electronics. Adv. Mater. 2010, 22, 3876–3892.
Ge, G. Y.; Li, J. T.; Wang, J. R.; Xiong, M.; Dong, X.; Li, Z. J.; Li, J. L.; Cao, X. Y.; Lei, T.; Wang, J. L. Unveiling the interplay among end group, molecular packing, doping level, and charge transport in N-doped small-molecule organic semiconductors. Adv. Funct. Mater. 2022, 32, 2108289.
Yang, C.; An, Q.; Bai, H. R.; Zhi, H. F.; Ryu, H. S.; Mahmood, A.; Zhao, X.; Zhang, S.; Woo, H. Y.; Wang, J. L. A synergistic strategy of manipulating the number of selenophene units and dissymmetric central core of small molecular acceptors enables polymer solar cells with 17.5 % efficiency. Angew. Chem., Int. Ed. 2021, 60, 19241–19252.
Zhang, Q.; Chen, Z.; Ma, W.; Xie, Z.; Han, Y. Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. J. Mater. Chem. C 2019, 7, 12560–12571.
Wang, L.; An, Q.; Yan, L.; Bai, H. R.; Jiang, M.; Mahmood, A.; Yang, C.; Zhi, H.; Wang, J. L. Non-fullerene acceptors with heterodihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency. Energy Environ. Sci. 2022, 15, 320–333.
Wang, J. L.; Liu, K. K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z. F.; Wu, H.-B.; Cao, Y.; Russell, T. P. Series of multifluorine substituted oligomers for organic solar cells with efficiency over 9% and fill factor of 0.77 by combination thermal and solvent vapor annealing. J. Am. Chem. Soc. 2016, 138, 7687–7697.
Jørgensen, P. B.; Mesta, M.; Shil, S.; Lastra, J. M. G.; Jacobsen, K. W.; Thygesen, K. S.; Schmidt, M. N. Machine learning-based screening of complex molecules for polymer solar cells. J. Chem. Phys. 2018, 148, 241735.
Nagasawa, S.; Al-Naamani, E.; Saeki, A. Computer-aided screening of conjugated polymers for organic solar cell: classification by random forest. J. Phys. Chem. Lett. 2018, 9, 2639–2646.
Ye, L.; Zhao, W.; Li, S.; Mukherjee, S.; Carpenter, J. H.; Awartani, O.; Jiao, X.; Hou, J.; Ade, H. High-efficiency nonfullerene organic solar cells: critical factors that affect complex multi-length scale morphology and device performance. Adv. Energy Mater. 2017, 7, 1602000.
Duong, D. T.; Walker, B.; Lin, J.; Kim, C.; Love, J.; Purushothaman, B.; Anthony, J. E.; Nguyen, T. Q. Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 1405–1413.
Perea, J. D.; Langner, S.; Salvador, M.; Sanchez-Lengeling, B.; Li, N.; Zhang, C.; Jarvas, G.; Kontos, J.; Dallos, A.; Aspuru-Guzik, A.; Brabec, C. J. Introducing a new potential figure of merit for evaluating microstructure stability in photovoltaic polymer-fullerene blends. J. Phys. Chem. C 2017, 121, 18153–18161.
Huang, Y.; Zhang, J.; Jiang, E. S.; Oya, Y.; Saeki, A.; Kikugawa, G.; Okabe, T.; Ohuchi, F. S. Structure-property correlation study for organic photovoltaic polymer materials using data science approach. J. Phys. Chem. C 2020, 124, 12871–12882.
Munshi, J.; Chen, W.; Chien, T.; Balasubramanian, G. Transfer learned designer polymers for organic solar cells. J. Chem. Inf. Model. 2021, 61, 134–142.
Wu, Y.; Guo, J.; Sun, R.; Min, J. Machine learning for accelerating the discovery of high-performance donor/acceptor pairs in non-fullerene organic solar cells. Npj Comput. Mater. 2020, 6, 120.
Miyake, Y.; Saeki, A. Machine learning-assisted development of organic solar cell materials: issues, analyses, and outlooks. J. Phys. Chem. Lett. 2021, 12, 12391–12401.
Kranthiraja, K.; Saeki, A. Experiment-oriented machine learning of polymer:non-fullerene organic solar cells. Adv. Funct. Mater. 2021, 31, 2011168.
Sun, W.; Li, M.; Li, Y.; Wu, Z.; Sun, Y.; Lu, S.; Xiao, Z.; Zhao, B.; Sun, K. The use of deep learning to fast evaluate organic photovoltaic materials. Adv. Theory Simul. 2019, 2, 1800116.
Pyzer-Knapp, E. O.; Li, K.; Aspuru-Guzik, A. Learning from the Harvard Clean Energy Project: the use of neural networks to accelerate materials discovery. Adv. Funct. Mater. 2015, 25, 6495–6502.
Lee, M. H. Performance and matching band structure analysis of tandem organic solar cells using machine learning approaches. Energy Technol. 2020, 8, 1900974.
Mahmood, A.; Wang, J. L. A Review of grazing incidence small-and wide-angle X-ray scattering techniques for exploring the film morphology of organic solar cells. Solar RRL 2020, 4, 2000337.
Mahmood, A.; Abdullah, M. I.; Khan, S. U. D. Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim. Acta — A: Mol. Biomol. Spectrosc. 2015, 139, 425–430.
Mahmood, A.; Saqib, M.; Ali, M.; Abdullah, M. I.; Khalid, B. Theoretical investigation for the designing of novel antioxidants. Can. J. Chem. 2013, 91, 126–130.