MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions inArabidopsis

Plant Cell - Tập 19 Số 7 - Trang 2225-2245 - 2007
Bruno Dombrecht1, Gang Xue1, S. J. Sprague2, John A. Kirkegaard2, John J. Ross3, James B. Reid3, G. P. Fitt4, Nasser Sewelam1,5, Peer M. Schenk5, John M. Manners1, Kemal Kazan1
1Commonwealth Scientific and Industrial Research Organization, Plant Industry, Queensland Bioscience Precinct, St Lucia, Queensland 4067, Australia
2Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory, 2601, Australia
3School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia
4Commonwealth Scientific and Industrial Research Organization Entomology, Long Pocket Laboratories, Indooroopilly, Queensland, 4068, Australia
5School of Integrative Biology, University of Queensland, St. Lucia, Queensland 4072, Australia

Tóm tắt

AbstractThe Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.

Từ khóa


Tài liệu tham khảo

2003, Plant Cell, 15, 63, 10.1105/tpc.006130

1997, Plant Cell, 9, 1859

2003, Science, 301, 653, 10.1126/science.1086391

2004, Plant Cell, 16, 3460, 10.1105/tpc.104.025833

2000, Proc. Natl. Acad. Sci. USA, 97, 14819, 10.1073/pnas.260502697

1995, Science, 268, 1745, 10.1126/science.7792599

2005, Plant Physiol., 138, 1058, 10.1104/pp.104.057794

1998, Proc. Natl. Acad. Sci. USA, 95, 5655, 10.1073/pnas.95.10.5655

2002, Planta, 214, 497, 10.1007/s00425-001-0688-y

1996, Plant Physiol., 111, 525, 10.1104/pp.111.2.525

2004, Mol. Plant Microbe Interact., 17, 763, 10.1094/MPMI.2004.17.7.763

2007, Plant Cell, 19, 148, 10.1105/tpc.106.044495

2000, Plant Cell, 12, 2383, 10.1105/tpc.12.12.2383

2004, Genes Dev., 18, 1577, 10.1101/gad.297704

2006, Plant J., 46, 758, 10.1111/j.1365-313X.2006.02743.x

2001, Plant Physiol., 126, 849, 10.1104/pp.126.2.849

2001, Plant Physiol., 126, 524, 10.1104/pp.126.2.524

2003, Plant Physiol., 132, 1020, 10.1104/pp.102.017814

2004, Plant Cell, 16, 1191, 10.1105/tpc.020313

2003, Plant Physiol., 133, 1272, 10.1104/pp.103.024182

2005, Plant Physiol., 137, 253, 10.1104/pp.104.054395

2005, Proc. Natl. Acad. Sci. USA, 102, 19237, 10.1073/pnas.0509026102

2003, Trends Genet., 19, 409, 10.1016/S0168-9525(03)00138-0

2004, Genome Res., 14, 1188, 10.1101/gr.849004

2004, Plant J., 38, 366, 10.1111/j.1365-313X.2004.02051.x

2003, Genome Biol., 4, 3, 10.1186/gb-2003-4-5-p3

1997, Plant Mol. Biol., 34, 169, 10.1023/A:1005898823105

2005, Mol. Plant Microbe Interact., 18, 923, 10.1094/MPMI-18-0923

2005, Plant Mol. Biol., 58, 497, 10.1007/s11103-005-7306-5

2002, Plant J., 32, 457, 10.1046/j.1365-313X.2002.01432.x

2007, Plant J., 50, 886, 10.1111/j.1365-313X.2007.03099.x

2006, Trends Plant Sci., 11, 89, 10.1016/j.tplants.2005.12.006

2004, Curr. Opin. Plant Biol., 7, 465, 10.1016/j.pbi.2004.04.007

1998, Plant Physiol., 116, 455, 10.1104/pp.116.2.455

2003, Plant Cell Physiol., 44, 1301, 10.1093/pcp/pcg157

2006, Trends Plant Sci., 11, 109, 10.1016/j.tplants.2006.01.004

2004, Plant J., 37, 104, 10.1046/j.1365-313X.2003.01943.x

2001, Plant Cell, 13, 2793, 10.1105/tpc.010261

2006, Mol. Plant Microbe Interact., 19, 789, 10.1094/MPMI-19-0789

2006, Proc. Natl. Acad. Sci. USA, 103, 472, 10.1073/pnas.0509463102

2007, Plant Cell, 19, 731, 10.1105/tpc.106.047688

2005, Plant Physiol., 139, 1545, 10.1104/pp.105.066837

2004, Plant Cell, 16, 1938, 10.1105/tpc.022319

2003, Plant Cell, 15, 165, 10.1105/tpc.007468

2005, Curr. Opin. Plant Biol., 8, 532, 10.1016/j.pbi.2005.07.003

2005, Plant Physiol., 139, 949, 10.1104/pp.105.068544

2003, Plant Physiol., 131, 298, 10.1104/pp.011015

1994, Plant Physiol. Biochem., 32, 193

2005, J. Plant Physiol., 162, 743, 10.1016/j.jplph.2005.04.022

2000, Planta, 211, 315, 10.1007/s004250000300

2003, J. Agric. Food Chem., 51, 2992, 10.1021/jf026179+

2004, Mol. Plant Pathol., 5, 425, 10.1111/j.1364-3703.2004.00242.x

2003, J. Biol. Chem., 278, 12563, 10.1074/jbc.M210462200

1999, J. Chem. Ecol., 25, 2687, 10.1023/A:1020895306588

2000, Plant J., 24, 327, 10.1046/j.1365-313x.2000.00883.x

2003, Trends Plant Sci., 8, 335, 10.1016/S1360-1385(03)00135-3

2006, Plant Physiol., 140, 818, 10.1104/pp.105.072280

2004, J. Plant Growth Regul., 23, 200, 10.1007/s00344-004-0033-3

2004, Plant Cell, 16, 1898, 10.1105/tpc.021501

2004, J. Biol. Chem., 279, 50717, 10.1074/jbc.M407681200

2001, Plant Cell Physiol., 42, 301, 10.1093/pcp/pce035

2004, Plant Cell, 16, 3132, 10.1105/tpc.104.026120

2002, Plant Cell, 14, 689, 10.1105/tpc.010357

2004, Plant Cell, 16, 2749, 10.1105/tpc.104.023705

2004, Plant J., 38, 172, 10.1111/j.1365-313X.2004.02031.x

1998, Plant J., 13, 153, 10.1046/j.1365-313X.1998.00020.x

2002, Planta, 216, 173, 10.1007/s00425-002-0888-0

1998, Plant Soil, 201, 91, 10.1023/A:1004333230899

2005, Plant J., 44, 653, 10.1111/j.1365-313X.2005.02560.x

2003, Plant Physiol., 132, 999, 10.1104/pp.103.021683

2000, Proc. Natl. Acad. Sci. USA, 97, 11655, 10.1073/pnas.97.21.11655

2006, Plant Physiol., 141, 1248, 10.1104/pp.106.082024

2002, Genetics, 160, 323, 10.1093/genetics/160.1.323

2002, Genetics, 161, 1235, 10.1093/genetics/161.3.1235

2005, Plant Cell, 17, 2230, 10.1105/tpc.105.033365

2003, Planta, 216, 422, 10.1007/s00425-002-0860-z

2007, Plant Cell, 19, 805, 10.1105/tpc.106.046581

2005, Plant Physiol., 139, 1840, 10.1104/pp.105.066688

1999, Plant J., 19, 163, 10.1046/j.1365-313X.1999.00513.x

2001, Plant Physiol., 125, 1688, 10.1104/pp.125.4.1688

2002, Plant Physiol., 130, 887, 10.1104/pp.005272

2005, Plant J., 42, 218, 10.1111/j.1365-313X.2005.02371.x

2007, Proc. Natl. Acad. Sci. USA, 104, 1075, 10.1073/pnas.0605423104

2001, Plant J., 25, 43

2005, Science, 308, 1036, 10.1126/science.1108791

2006, Plant Cell, 18, 1617, 10.1105/tpc.105.038232

2002, Trends Plant Sci., 7, 263, 10.1016/S1360-1385(02)02273-2

2005, J. Exp. Bot., 56, 2527, 10.1093/jxb/eri246

2005, Ann. Bot. (Lond.), 95, 707, 10.1093/aob/mci083

1998, Science, 280, 1091, 10.1126/science.280.5366.1091

2005, Plant J., 41, 638, 10.1111/j.1365-313X.2004.02323.x

2005, Plant Cell, 17, 1953, 10.1105/tpc.105.032060

2005, Phytochemistry, 66, 859, 10.1016/j.phytochem.2005.02.026

2006, Plant Cell Environ., 29, 1751, 10.1111/j.1365-3040.2006.01551.x

2003, Development, 130, 4859, 10.1242/dev.00681

2006, Plant Physiol., 141, 1400, 10.1104/pp.106.080390

2006, Plant J., 48, 592, 10.1111/j.1365-313X.2006.02901.x

2005, Plant Cell, 17, 1196, 10.1105/tpc.104.028514

1999, Plant Cell, 11, 2419, 10.1105/tpc.11.12.2419

2007, Plant Cell, 19, 2039, 10.1105/tpc.107.051383