MXene-supported transition metal single-atom catalysts for nitrogen dissociation

Molecular Catalysis - Tập 547 - Trang 113373 - 2023
José D. Gouveia1, Henrique Rocha1, José R.B. Gomes1
1Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal

Tài liệu tham khảo

Kandemir, 2013, The haber-bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions, Angew. Chemie Int. Ed., 52, 12723, 10.1002/anie.201305812 Lassaletta, 2014, 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland, Environ. Res. Lett., 9, 10.1088/1748-9326/9/10/105011 Valera-Medina, 2018, Ammonia for power, Prog. Energy Combust. Sci., 69, 63, 10.1016/j.pecs.2018.07.001 Afonso, 2021, Catalytic reactions for H 2 production on multimetallic surfaces: a review, J. Phys. Energy, 3, 10.1088/2515-7655/ac0d9f Spencer, 1982, Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity, J. Catal., 74, 129, 10.1016/0021-9517(82)90016-1 Honkala, 2005, Ammonia synthesis from first-principles calculations, Science (80), 307, 555, 10.1126/science.1106435 Rochana, 2014, Nitrogen adsorption, dissociation, and subsurface diffusion on the vanadium (110) surface: a DFT study for the nitrogen-selective catalytic membrane application, J. Phys. Chem. C, 118, 4238, 10.1021/jp411763k Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Vojvodic, 2014, Exploring the limits: a low-pressure, low-temperature haber–bosch process, Chem. Phys. Lett., 598, 108, 10.1016/j.cplett.2014.03.003 Deeva, 2019, Situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTX : implications for the catalytic activity in the water–gas shift reaction, Chem. Mater., 31, 4505, 10.1021/acs.chemmater.9b01105 Yorulmaz, 2016, Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation, Nanotechnology, 27, 10.1088/0957-4484/27/33/335702 Li, 2019, 2D early transition metal carbides (MXenes) for catalysis, Small, 15, 10.1002/smll.201804736 Gouveia, 2020, MXenes as promising catalysts for water dissociation, Appl. Catal. B Environ., 260, 10.1016/j.apcatb.2019.118191 Gouveia, 2022, The determining role of T species in the catalytic potential of MXenes: water adsorption and dissociation on Mo2CT, Catal. Today Morales-Salvador, 2021, Carbon capture and usage by MXenes, ACS Catal, 11, 11248, 10.1021/acscatal.1c02663 Morales-Salvador, 2018, Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation, Phys. Chem. Chem. Phys., 20, 17117, 10.1039/C8CP02746C Persson, 2019, 2D transition metal carbides (MXenes) for carbon capture, Adv. Mater., 31, 10.1002/adma.201805472 Yi, 2019, Theoretical insights into nitrogen fixation on Ti2C and Ti2CO2 in a lithium–nitrogen battery, J. Mater. Chem. A, 7, 19950, 10.1039/C9TA06232G Gouveia, 2020, Facile heterogeneously catalyzed nitrogen fixation by MXenes, ACS Catal, 10, 5049, 10.1021/acscatal.0c00935 Gouveia, 2020, MXenes atomic layer stacking phase transitions and their chemical activity consequences, Phys. Rev. Mater., 4 Murali, 2022, A review on MXene synthesis, stability, and photocatalytic applications, ACS Nano, 16, 13370, 10.1021/acsnano.2c04750 Peng, 2023, Single Zn atom catalyst on Ti2CN2 MXenes for efficient CO oxidation, Phys. E Low-dimensional Syst. Nanostructures, 147 Zhao, 2019, Ti3C2 vacancy-confined single-atom catalyst for efficient functionalization of CO2, J. Am. Chem. Soc., 141, 4086, 10.1021/jacs.8b13579 Rocha, 2022, Transition metal atom adsorption on the titanium carbide mxene: trends across the periodic table for the bare and O-terminated surfaces, Phys. Rev. Mater., 6 Oschinski, 2021, Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: a quest for single-atom catalysts, J. Phys. Chem. C, 125, 2477, 10.1021/acs.jpcc.0c10877 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Grimme, 2010, A consistent and accurate ab initio parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 10.1063/1.3382344 Gouveia, 2020, First-principles calculations on the adsorption behavior of amino acids on a titanium carbide MXene, ACS Appl. Bio Mater., 3, 5913, 10.1021/acsabm.0c00621 Gouveia, 2021, The Ti2CO2 MXene as a nucleobase 2D sensor: a first-principles study, Appl. Surf. Sci., 544, 10.1016/j.apsusc.2021.148946 Bordonhos, 2022, Multiscale computational approaches toward the understanding of materials, Adv. Theory Simulations Patel, 2018, Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts, J. Phys. Chem. C, 122, 29307, 10.1021/acs.jpcc.8b09430 Barlocco, 2022, Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: role of the functional, Adv. Theory Simulations Xie, 2013, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers, Phys. Rev. B, 87, 10.1103/PhysRevB.87.235441 Guha, 2022, High-throughput design of functional-engineered MXene transistors with low-resistive contacts, NPJ Comput. Mater., 8, 202, 10.1038/s41524-022-00885-6 Gouveia, 2022, Structural and energetic properties of vacancy defects in MXene surfaces, Phys. Rev. Mater., 6 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Monkhorst, 1976, Special points for brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Henkelman, 1999, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys., 111, 7010, 10.1063/1.480097 Di Liberto, 2021, Role of dihydride and dihydrogen complexes in hydrogen evolution reaction on single-atom catalysts, J. Am. Chem. Soc., 143, 20431, 10.1021/jacs.1c10470 Cipriano, 2022, Superoxo and peroxo complexes on single-atom catalysts: impact on the oxygen evolution reaction, ACS Catal., 12, 11682, 10.1021/acscatal.2c03020 Deringer, 2011, Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A, 115, 5461, 10.1021/jp202489s Maintz, 2016, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem., 37, 1030, 10.1002/jcc.24300 Heyd, 2003, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060 Gouveia, 2019, Can we rely on hybrid-DFT energies of solid-state problems with local-DFT geometries?, Electron. Struct., 1, 10.1088/2516-1075/aafc4b Bronsted, 1928, Acid and basic catalysis, Chem. Rev., 5, 231, 10.1021/cr60019a001 Evans, 1938, Inertia and driving force of chemical reactions, Trans. Faraday Soc., 34, 11, 10.1039/tf9383400011 Gouveia, 2023, Effect of the surface termination on the adsorption of flue gas by the titanium carbide MXene, Mater. Today Chem., 29