MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review

Water Resources and Industry - Tập 31 - Trang 100230 - 2024
Bakhtiar Ali Samejo1,2, Kainat Naseer3, Suraya Samejo1, Farooque Ahmed Janjhi4,2, Najma Memon1, Roberto Castro-Muñoz2,5, Grzegorz Boczkaj2,6
1National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
2Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 – 233, Gdansk, G. Narutowicza St. 11/12, Poland
3Faculty of Pharmacy, University of Karachi, Sindh, Pakistan
4Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80 – 233 Gdansk, G. Narutowicza St. 11/12, Poland
5Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
6Adv. Mater. Center, Gdansk University of Technology, 80 – 233, Gdansk, G. Narutowicza St. 11/12, Poland

Tài liệu tham khảo

Younes, 2019, Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization, Electrochim. Acta, 306, 1, 10.1016/j.electacta.2019.03.097 Zhao, 2019, A core–shell heterostructured CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization, J. Mater. Chem. A, 7, 10464, 10.1039/C8TA12433G Guo, 2018, A high performance electrochemical deionization method to desalinate brackish water with an FePO4/RGO nanocomposite, J. Mater. Chem. A, 6, 8901, 10.1039/C8TA01361F Yue, 2019, Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@rGO‖Na1.1V3O7.9@rGO, J. Mater. Chem. A, 7, 16892, 10.1039/C9TA03570B Wang, 2020, Ion removal performance and enhanced cyclic stability of SnO2/CNT composite electrode in hybrid capacitive deionization, Mater. Today Commun., 23 Kim, 2017, Low energy desalination using battery electrode deionization, Environ. Sci. Technol. Lett., 4, 444, 10.1021/acs.estlett.7b00392 Suss, 2015, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8, 2296, 10.1039/C5EE00519A Goh, 2015, Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology, Desalination, 356, 115, 10.1016/j.desal.2014.10.001 Samejo, 2021, Carbon Based Electrode Materials and their Architectures for Capacitive Deionization, 22, 33 Gao, 2019, Preparation of nitrogen-doped graphitic porous carbon towards capacitive deionization with high adsorption capacity and rate capability, Separ. Purif. Technol., 211, 233, 10.1016/j.seppur.2018.09.085 Zhao, 2018, Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization, Chem. Eng. J., 334, 1270, 10.1016/j.cej.2017.11.069 Li, 2017, A protic salt-derived porous carbon for efficient capacitive deionization: balance between porous structure and chemical composition, Carbon, 116, 21, 10.1016/j.carbon.2017.01.084 Xu, 2019, Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination, Environ. Sci.: Nano, 6, 981 Xu, 2019, Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination, Chem. Eng. J., 362, 887, 10.1016/j.cej.2019.01.098 Li, 2017, Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization, ACS Sustain. Chem. Eng., 5, 6635, 10.1021/acssuschemeng.7b00884 Shi, 2020, Thermal conversion of polypyrrole nanotubes to nitrogen-doped carbon nanotubes for efficient water desalination using membrane capacitive deionization, Separ. Purif. Technol., 235, 10.1016/j.seppur.2019.116196 Li, 2018, Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization, Carbon, 130, 377, 10.1016/j.carbon.2018.01.035 Wang, 2016, Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: importance and unique role of electrical conductivity, Carbon, 103, 311, 10.1016/j.carbon.2016.03.025 Xu, 2016, Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 193, 88, 10.1016/j.electacta.2016.02.049 Huang, 2019, Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction, Adv. Mater., 31, 10.1002/adma.201903415 Xu, 2020, Nitrogen-doped nanostructured carbons: a new material horizon for water desalination by capacitive deionization, Inside Energy, 2 Zhang, 2022, Recent progress in metal-based composites toward adsorptive removal of phosphate: mechanisms, behaviors, and prospects, Chem. Eng. J., 446 Zhang, 2022 Yang, 2022, Bottom-up synthesis of MOF-derived magnetic Fe-Ce bimetal oxide with ultrahigh phosphate adsorption performance, Chem. Eng. J., 448, 10.1016/j.cej.2022.137627 Chen, 2020, Capacitive deionization and electrosorption for heavy metal removal, Environ. Sci. J. Integr. Environ. Res.: Water Res. & Technol., 6, 258 Zhang, 2023, Engineering bimetallic capture sites on hierarchically porous carbon electrode for efficient phosphate electrosorption: multiple active centers and excellent electrochemical properties, J. Mater. Chem. A, 11, 579, 10.1039/D2TA07752C He, 2022, Remarkable phosphate electrosorption/desorption by bimetallic MOF-derived hierarchically porous carbon electrode: in-situ creation of multiple active centers and boosting electrochemical activities, Chem. Eng. J., 446, 10.1016/j.cej.2022.137396 Barbieri, 2005, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303, 10.1016/j.carbon.2005.01.001 Zhang, 2022, Mxene pseudocapacitive electrode material for capacitive deionization, Chem. Eng. J., 435, 10.1016/j.cej.2022.134959 Sivasubramanian, 2023, Capacitive deionization and electrosorption techniques with different electrodes for wastewater treatment applications, Desalination, 559, 10.1016/j.desal.2023.116652 Vafakhah, 2020, A review on free-standing electrodes for energy-effective desalination: recent advances and perspectives in capacitive deionization, Desalination, 493, 10.1016/j.desal.2020.114662 Zhou, 2018, Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity, Chem. Eng. J., 343, 8, 10.1016/j.cej.2018.02.124 Shi, 2020, Self-supporting Prussian blue@CNF based battery-capacitor with superhigh adsorption capacity and selectivity for potassium recovery, Chem. Eng. J., 388, 10.1016/j.cej.2020.124162 Chen, 2017, Dual-ions electrochemical deionization: a desalination generator, Energy Environ. Sci., 10, 2081, 10.1039/C7EE00855D Yue, 2019, Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance, Desalination, 449, 69, 10.1016/j.desal.2018.10.018 Biesheuvel, 2010, Membrane capacitive deionization, J. Membr. Sci., 346, 256, 10.1016/j.memsci.2009.09.043 Liu, 2021, Recent advances in faradic electrochemical deionization: system architectures versus electrode materials, ACS Nano, 15, 13924, 10.1021/acsnano.1c03417 Kim, 2015, Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system, Chemosphere, 125, 50, 10.1016/j.chemosphere.2015.01.024 Byles, 2018, Ion removal performance, structural/compositional dynamics, and electrochemical stability of layered manganese oxide electrodes in hybrid capacitive deionization, ACS Appl. Mater. Interfaces, 10, 32313, 10.1021/acsami.8b09638 Guo, 2017, A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism, Nanoscale, 9, 13305, 10.1039/C7NR03579A Ding, 2019, Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation, Desalination, 468, 10.1016/j.desal.2019.114078 Liang, 2020, Nitrogen and sulfur co-doped NaTi2(PO4)3/hole graphene composite as high-performance electrosorption electrodes for hybrid capacitive deionization, J. Mater. Sci., 55, 6017, 10.1007/s10853-020-04426-8 Liu, 2018, vol. 4, 53 Guo, 2018, Integrating desalination and energy storage using a saltwater-based hybrid sodium-ion supercapacitor, ChemSusChem, 11, 1741, 10.1002/cssc.201800517 Cao, 2019, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination, Nano Lett., 19, 823, 10.1021/acs.nanolett.8b04006 Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Xu, 2016, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity, Adv. Mater., 28, 3333, 10.1002/adma.201504657 Cai, 2018, Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance, Appl. Catal. B Environ., 239, 545, 10.1016/j.apcatb.2018.08.053 Naguib, 2015, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res., 48, 128, 10.1021/ar500346b Gogotsi, 2019, The rise of MXenes, ACS Nano, 13, 8491, 10.1021/acsnano.9b06394 Hu, 2018, Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene, ACS Nano, 12, 3578, 10.1021/acsnano.8b00676 Liu, 2019, MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood, Adv. Funct. Mater., 29 Naguib, 2014, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138 Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970 Halim, 2014, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater., 26, 2374, 10.1021/cm500641a Hagemann, 2018, Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon's ABCs, Water, 10, 182, 10.3390/w10020182 Lukatskaya, 2014, Room‐temperature carbide‐derived carbon synthesis by electrochemical etching of MAX phases, Angew. Chem., 126, 4977, 10.1002/ange.201402513 Xing, 2018, Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity, ACS Appl. Mater. Interfaces, 10, 27631, 10.1021/acsami.8b08314 Alhabeb, 2017, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 29, 7633, 10.1021/acs.chemmater.7b02847 Hantanasirisakul, 2018, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater., 30, 10.1002/adma.201804779 Naguib, 2013, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc., 135, 15966, 10.1021/ja405735d Xiong, 2018, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage, Small, 14, 10.1002/smll.201703419 Srivastava, 2016, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene, ACS Appl. Mater. Interfaces, 8, 24256, 10.1021/acsami.6b08413 Naguib, 2012, Two-dimensional transition metal carbides, ACS Nano, 6, 1322, 10.1021/nn204153h Song, 2016, Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials, Nanoscale, 8, 15671, 10.1039/C6NR04130B Shen, 2018, Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage, J. Mater. Chem. A, 6, 23513, 10.1039/C8TA09600G Yu, 2018, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors, ACS Energy Lett., 3, 1597, 10.1021/acsenergylett.8b00718 Gao, 2018, Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li–S batteries, Small, 14 Zhao, 2015, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater., 27, 339, 10.1002/adma.201404140 Shao, 2018, Polyester@MXene nanofibers-based yarn electrodes, J. Power Sources, 396, 683, 10.1016/j.jpowsour.2018.06.084 Boota, 2019, MXene—conducting polymer asymmetric pseudocapacitors, Adv. Energy Mater., 9, 10.1002/aenm.201802917 Sun, 2017, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding, Adv. Funct. Mater., 27, 10.1002/adfm.201702807 Rasool, 2019, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes), Mater. Today, 30, 80, 10.1016/j.mattod.2019.05.017 Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.98 Zhang, 2016, Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study, J. Hazard Mater., 308, 402, 10.1016/j.jhazmat.2016.01.053 Zhu, 2017, Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev., 352, 306, 10.1016/j.ccr.2017.09.012 Cheng, 2019, Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation, J. Phys. Chem. Lett., 10, 3488, 10.1021/acs.jpclett.9b00736 Zhang, 2019, Sorption of Eu(III) on MXene-derived titanate structures: the effect of nano-confined space, Chem. Eng. J., 370, 1200, 10.1016/j.cej.2019.03.286 Sun, 2019, 2D MXenes as Co-catalysts in photocatalysis: synthetic methods, Nano-Micro Lett., 11, 79, 10.1007/s40820-019-0309-6 Guo, 2016, MXene: a promising photocatalyst for water splitting, J. Mater. Chem. A, 4, 11446, 10.1039/C6TA04414J Ren, 2015, Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes, J. Phys. Chem. Lett., 6, 4026, 10.1021/acs.jpclett.5b01895 Shahzad, 2017, Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water, ACS Sustain. Chem. Eng., 5, 11481, 10.1021/acssuschemeng.7b02695 Iqbal, 2019, La- and Mn-codoped bismuth ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of Congo red dye, ACS Omega, 4, 8661, 10.1021/acsomega.9b00493 Zhang, 2019, Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: insight into removal performance and mechanism, ACS Appl. Mater. Interfaces, 11, 24027, 10.1021/acsami.9b04222 Dixit, 2022, Application of MXenes for water treatment and energy-efficient desalination: a review, J. Hazard Mater., 423, 10.1016/j.jhazmat.2021.127050 Janjhi, 2023, MXene-based materials for removal of antibiotics and heavy metals from wastewater– a review, Water Resour. Ind., 29, 10.1016/j.wri.2023.100202 Torrie, 1982, Electrical double layers. 4. Limitations of the Gouy-Chapman theory, J. Phys. Chem., 86, 3251, 10.1021/j100213a035 Reedijk, 2014 Shen, 2020, All-MXene-based integrated membrane electrode constructed using Ti3C2Tx as an intercalating agent for high-performance desalination, Environ. Sci. Technol., 54, 4554, 10.1021/acs.est.9b05759 Zhang, 2018, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: a review, Water Res., 128, 314, 10.1016/j.watres.2017.10.024 Elisadiki, 2020, Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: a review, J. Electroanal. Chem., 878, 10.1016/j.jelechem.2020.114588 Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.98 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Zhang, 2019, Tribology of two-dimensional materials: from mechanisms to modulating strategies, Mater. Today, 26, 67, 10.1016/j.mattod.2018.12.002 Zhu, 2019, Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance, J. Energy Chem., 31, 11, 10.1016/j.jechem.2018.03.010 VahidMohammadi, 2017, Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries, ACS Nano, 11, 11135, 10.1021/acsnano.7b05350 Soundiraraju, 2017, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate, ACS Nano, 11, 8892, 10.1021/acsnano.7b03129 Tao, 2017, Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering, Nat. Commun., 8, 10.1038/ncomms14949 Halim, 2018, Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase, ACS Appl. Nano Mater., 1, 2455, 10.1021/acsanm.8b00332 Meshkian, 2018, Atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering, Adv. Mater., 30, 10.1002/adma.201706409 Wang, 2015, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc., 137, 2715, 10.1021/ja512820k Wang, 2016, Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function, Chem. Mater., 28, 349, 10.1021/acs.chemmater.5b04250 Tran, 2018, Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx, ACS Appl. Energy Mater., 1, 3908, 10.1021/acsaem.8b00652 Anasori, 2015, Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano, 9, 9507, 10.1021/acsnano.5b03591 Halim, 2016, Synthesis and characterization of 2D molybdenum carbide (MXene), Adv. Funct. Mater., 26, 3118, 10.1002/adfm.201505328 Liu, 2017, Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries, J. Electrochem. Soc., 164, A709, 10.1149/2.0641704jes Du, 2017, Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries, Electrochim. Acta, 235, 690, 10.1016/j.electacta.2017.03.153 Yang, 2016, Two-dimensional Nb-based M4C3 solid solutions (MXenes), J. Am. Ceram. Soc., 99, 660, 10.1111/jace.13922 Wang, 2014, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, J. Mater. Chem. A, 2, 4739, 10.1039/C3TA15152B Feng, 2017, Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene, Ceram. Int., 43, 6322, 10.1016/j.ceramint.2017.02.039 Urbankowski, 2016, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale, 8, 11385, 10.1039/C6NR02253G Zhou, 2013, Synthesis and structure–property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems, J. Eur. Ceram. Soc., 33, 2831, 10.1016/j.jeurceramsoc.2013.05.020 Wu, 2017, Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance, ACS Appl. Mater. Interfaces, 9, 39610, 10.1021/acsami.7b12155 Mashtalir, 2013, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4, 1716, 10.1038/ncomms2664 Zhang, 2017, Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination, J. Alloys Compd., 695, 818, 10.1016/j.jallcom.2016.10.127 Ronchi, 2019, Synthesis, structure, properties and applications of MXenes: current status and perspectives, Ceram. Int., 45, 18167, 10.1016/j.ceramint.2019.06.114 Srimuk, 2016, MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization, J. Mater. Chem. A, 4, 18265, 10.1039/C6TA07833H Srimuk, 2018, Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation, ACS Sustain. Chem. Eng., 6, 3739, 10.1021/acssuschemeng.7b04095 Bao, 2018, Porous cryo-dried MXene for efficient capacitive deionization, Joule, 2, 778, 10.1016/j.joule.2018.02.018 Chen, 2020, MXene as a cation-selective cathode material for asymmetric capacitive deionization, ACS Appl. Mater. Interfaces, 12 Naguib, 2015, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”, Dalton Trans., 44, 9353, 10.1039/C5DT01247C Xiaojie, 2020, All-MXene-based integrated membrane electrode constructed using Ti₃C₂Tₓ as an intercalating agent for high-performance desalination, Environ. Sci. Technol., 54 Wang, 2015, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun., 6, 6544, 10.1038/ncomms7544 Rakhi, 2016, Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications, ACS Appl. Mater. Interfaces, 8, 18806, 10.1021/acsami.6b04481 Xia, 2018, Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density, Electrochim. Acta, 271, 351, 10.1016/j.electacta.2018.03.168 Chen, 2021, Subsize Ti3C2Tx derived from molten-salt synthesized Ti3AlC2 for enhanced capacitive deionization, Ceram. Int., 47, 3665, 10.1016/j.ceramint.2020.09.218 Feng, 2017, Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2, Mater. Des., 114, 161, 10.1016/j.matdes.2016.10.053 Sang, 2016, Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene, ACS Nano, 10, 9193, 10.1021/acsnano.6b05240 Han, 2019, Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization, Chem. Eng. J., 360, 364, 10.1016/j.cej.2018.11.236 Chen, 2020, MXene as a cation-selective cathode material for asymmetric capacitive deionization, ACS Appl. Mater. Interfaces, 12, 13750, 10.1021/acsami.9b19684 Chen, 2021, High-performance capacitive deionization using 3D porous Ti3C2Tx with improved conductivity, J. Electroanal. Chem., 895, 10.1016/j.jelechem.2021.115515 Wang, 2019, Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction, Environ. Sci.: Nano, 6, 2379 Torkamanzadeh, 2020, MXene/activated-carbon hybrid capacitive deionization for permselective ion removal at low and high salinity, ACS Appl. Mater. Interfaces, 12, 26013, 10.1021/acsami.0c05975 Guo, 2018, Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination, FlatChem, 8, 17, 10.1016/j.flatc.2018.01.001 Bharath, 2020, The fabrication of activated carbon and metal-carbide 2D framework-based asymmetric electrodes for the capacitive deionization of Cr(vi) ions toward industrial wastewater remediation, Environ. Sci. J. Integr. Environ. Res.: Water Res. & Technol., 6, 351 Zhang, 2017, On-site separation of Cr(vi) and Cr(iii) in natural waters by parallel cartridge ion-exchange columns, RSC Adv., 7, 50657, 10.1039/C7RA10303D Liu, 2018, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: methods, synergies, and energy-related applications, Small, 14, 10.1002/smll.201803632 Lu, 2016, Cation intercalation in manganese oxide nanosheets: effects on lithium and sodium storage, Angew. Chem., 128, 10604, 10.1002/ange.201605102 Hand, 2017, Characterizing the impacts of deposition techniques on the performance of MnO2 cathodes for sodium electrosorption in hybrid capacitive deionization, Environ. Sci. Technol., 51, 12027, 10.1021/acs.est.7b03060 Liu, 2021, In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability, Desalination, 500, 10.1016/j.desal.2020.114897 Luo, 2017, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29, 10.1002/adma.201606042 Malik, 2018, Maxing out water desalination with MXenes, Joule, 2, 591, 10.1016/j.joule.2018.04.001 Augustyn, 2017, 2D materials with nanoconfined fluids for electrochemical energy storage, Joule, 1, 443, 10.1016/j.joule.2017.09.008 Karthikeyan, 2021, Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment, Ceram. Int., 47, 732, 10.1016/j.ceramint.2020.08.183 Bao, 2018, Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries, Adv. Energy Mater., 8 Wen, 2017, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors, Nano Energy, 38, 368, 10.1016/j.nanoen.2017.06.009 Yoon, 2018, A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes, Adv. Energy Mater., 8, 10.1002/aenm.201703173 Yang, 2018, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance, Adv. Energy Mater., 8, 10.1002/aenm.201802087 Amiri, 2020, Porous nitrogen-doped MXene-based electrodes for capacitive deionization, Energy Storage Mater., 25, 731, 10.1016/j.ensm.2019.09.013 Anwer, 2021, 2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination, Chem. Eng. J., 406, 10.1016/j.cej.2020.126827 Luo, 2019, Efficient electrocatalytic N2 fixation with MXene under ambient conditions, Joule, 3, 279, 10.1016/j.joule.2018.09.011 Sang, 2018, In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides, Nat. Commun., 9, 1, 10.1038/s41467-018-04610-0 Mansoor, 2022, Removal and recovery of ammonia from simulated wastewater using Ti3C2Tx MXene in flow electrode capacitive deionization, npj Clean Water, 5, 26, 10.1038/s41545-022-00164-3 Chen, 2021, Ti3C2 MXenes-derived NaTi2(PO4)3/MXene nanohybrid for fast and efficient hybrid capacitive deionization performance, Chem. Eng. J., 407, 10.1016/j.cej.2020.127148 Zhang, 2022 Agartan, 2020, Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system, Desalination, 477, 10.1016/j.desal.2019.114267 Ai, 2021, Highly flexible, self-healable and conductive poly(vinyl alcohol)/Ti3C2Tx MXene film and it's application in capacitive deionization, Chem. Eng. J., 408, 10.1016/j.cej.2020.127256 Liang, 2020, Combining battery-type and pseudocapacitive charge storage in Ag/Ti3C2Tx MXene electrode for capturing chloride ions with high capacitance and fast ion transport, Adv. Sci., 7, 10.1002/advs.202000621 Ma, 2020, Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity, Chem. Eng. J., 384, 10.1016/j.cej.2019.123329 Buczek, 2020, Rational design of titanium carbide MXene electrode architectures for hybrid capacitive deionization, Energy & Environ. Mater., 3, 398, 10.1002/eem2.12110 Hatzell, 2015, Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization, Environ. Sci. Technol., 49, 3040, 10.1021/es5055989 Długołęcki, 2013, Energy recovery in membrane capacitive deionization, Environ. Sci. Technol., 47, 4904, 10.1021/es3053202 Cai, 2018, Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling, Adv. Sci., 5, 10.1002/advs.201800680 Pasta, 2012, A desalination battery, Nano Lett., 12, 839, 10.1021/nl203889e Yoon, 2017, Hybrid capacitive deionization with Ag coated carbon composite electrode, Desalination, 422, 42, 10.1016/j.desal.2017.08.010 VahidMohammadi, 2019, 2D MXenes: assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities (adv. Mater. 8/2019), Adv. Mater., 31 Zhu, 2017, Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries, Chemelectrochem, 4, 3018, 10.1002/celc.201700523 Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488 Come, 2015, Controlling the actuation properties of MXene paper electrodes upon cation intercalation, Nano Energy, 17, 27, 10.1016/j.nanoen.2015.07.028 Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975 Xie, 2013, Hybrid density functional study of structural and electronic properties of functionalized Ti${ }_{n+1}{X}_{n}$ ($X=\mathrm{C}$, N) monolayers, Phys. Rev. B, 87, 10.1103/PhysRevB.87.235441 Feng, 2019, Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization, Ionics, 25, 727, 10.1007/s11581-018-2787-9 Hope, 2016, NMR reveals the surface functionalisation of Ti3C2 MXene, Phys. Chem. Chem. Phys., 18, 5099, 10.1039/C6CP00330C Qin, 2019, Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis, Desalination, 455, 100, 10.1016/j.desal.2019.01.003 Al-Karaghouli, 2013, Energy consumption and water production cost of conventional and, Renew. -Energy-Powered Desalination Processes, 24, 343 Youssef, 2014, Comparative analysis of desalination technologies, Energy Proc., 61, 2604, 10.1016/j.egypro.2014.12.258 Elisadiki, 2020, Biomass-based carbon electrode materials for capacitive deionization: a review, Biomass Conversion and Biorefinery, 10, 1327, 10.1007/s13399-019-00463-9 Warsinger, 2015, vol. 356, 294 Porada, 2013, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environ. Sci., 6, 3700, 10.1039/c3ee42209g Cohen, 2013, Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion, Electrochim. Acta, 106, 91, 10.1016/j.electacta.2013.05.029 Omosebi, 2014, Asymmetric electrode configuration for enhanced membrane capacitive deionization, ACS Appl. Mater. Interfaces, 6, 10.1021/am5026209 Holubowitch, 2017, Quasi-steady-state polarization reveals the interplay of capacitive and faradaic processes in capacitive deionization, Chemelectrochem, 4, 2404, 10.1002/celc.201700082 Gao, 2015, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior, Energy Environ. Sci., 8, 897, 10.1039/C4EE03172E Hatzell, 2014, Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 43, 18, 10.1016/j.elecom.2014.03.003 Bao, 2018, Porous cryo-dried MXene for efficient capacitive deionization, Joule, 2, 778, 10.1016/j.joule.2018.02.018 Lipatov, 2016, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes, Adv. Electron. Mater., 2, 10.1002/aelm.201600255 Shuck, 2019, Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene, ACS Appl. Nano Mater., 2, 3368, 10.1021/acsanm.9b00286 Zhang, 2017, Oxidation stability of colloidal two-dimensional titanium carbides (MXenes), Chem. Mater., 29, 4848, 10.1021/acs.chemmater.7b00745 Habib, 2019, Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films, npj 2D Mater. Appl., 3, 8, 10.1038/s41699-019-0089-3