MXene aerogel-based phase change film for synergistic thermal management inspired by antifreeze beetles

Cell Reports Physical Science - Tập 3 - Trang 100815 - 2022
Xiujie Ji1, Yue Jiang2,3, Ting Liu1, Sijie Lin2,3, Ai Du1
1Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
2College of Environmental Science and Engineering, The Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University, Shanghai 200092, People’s Republic of China
3Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, People’s Republic of China

Tài liệu tham khảo

Heinrich, 2013 Walters, 2009, A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides, Proc. Natl. Acad. Sci. U S A, 106, 20210, 10.1073/pnas.0909872106 Qiu, 2010, Expression of biologically active recombinant antifreeze protein His-MpAFP149 from the desert beetle (Microdera punctipennis dzungarica) in Escherichia coli, Mol. Biol. Rep., 37, 1725, 10.1007/s11033-009-9594-3 Elnitsky, 2008, Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica, J. Exp. Biol., 211, 524, 10.1242/jeb.011874 Yeh, 1996, Antifreeze proteins: structures and mechanisms of function, Chem. Rev., 96, 601, 10.1021/cr950260c Hudait, 2019, Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice, J. Am. Chem. Soc., 141, 7887, 10.1021/jacs.9b02248 Liu, 2016, Janus effect of antifreeze proteins on ice nucleation, Proc. Natl. Acad. Sci. U S A, 113, 14739, 10.1073/pnas.1614379114 Qiu, 2013, A novel function – thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis, Cryobiology, 66, 60, 10.1016/j.cryobiol.2012.11.005 Cui, 2013, Influence of indoor air temperature on human thermal comfort, motivation and performance, Build. Environ., 68, 114, 10.1016/j.buildenv.2013.06.012 Faraj, 2020, Phase change material thermal energy storage systems for cooling applications in buildings: a review, Renew. Sustain. Energ. Rev., 119, 109579, 10.1016/j.rser.2019.109579 Umair, 2019, Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review, Appl. Energ., 235, 846, 10.1016/j.apenergy.2018.11.017 Yan, 2021, Variation in cell membrane integrity and enzyme activity of the button mushroom (Agaricus bisporus) during storage and transportation, J. Food Sci. Technol., 58, 1655, 10.1007/s13197-020-04674-1 Ye, 2015, Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage, J. Mater. Chem. A., 3, 4018, 10.1039/C4TA05448B Yan, 2021, Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage, Carbon, 176, 178, 10.1016/j.carbon.2020.12.035 Huang, 2019, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J., 356, 641, 10.1016/j.cej.2018.09.013 Zhang, 2018, Novel semi-interpenetrating network structural phase change composites with high phase change enthalpy, AIChE J., 64, 688, 10.1002/aic.15956 Wang, 2010, Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning, Macromol. Rapid Commun., 31, 1622, 10.1002/marc.201000185 Li, 2016, From anisotropic graphene aerogels to electron- and photo-driven phase change composites, J. Mater. Chem. A., 4, 17042, 10.1039/C6TA07587H Lyu, 2019, Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth, ACS Nano., 13, 2236 Fang, 2017, Form-stable phase change material embedded with chitosan-derived carbon aerogel, Mater. Lett., 195, 79, 10.1016/j.matlet.2017.02.075 Li, 2018, Multiresponsive graphene-aerogel-directed phase-change smart fibers, Adv. Mater., 30, e1801754, 10.1002/adma.201801754 Zhao, 2019, Graphene oxide aerogel beads filled with phase change material for latent heat storage and release, ACS Appl. Energ. Mater., 2, 3657, 10.1021/acsaem.9b00374 Wang, 2020, Nanoporous boron nitride aerogel film and its smart composite with phase change materials, ACS Nano., 14, 16590, 10.1021/acsnano.0c05931 Zhong, 2013, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management, Sol. Energ. Mater. Sol. Cells, 113, 195, 10.1016/j.solmat.2013.01.046 Xia, 2017, Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity, J. Mater. Chem. A., 5, 15191, 10.1039/C7TA03432F Cheng, 2018, A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes, Chem. Commun., 54, 11622, 10.1039/C8CC05866K Xu, 2020, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications, Adv. Funct. Mater., 30, 2000712, 10.1002/adfm.202000712 Li, 2017, MXene Ti3C2: an effective 2D light-to-heat conversion material, ACS Nano., 11, 3752, 10.1021/acsnano.6b08415 Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Liu, 2022, Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application, Chem. Eng. J., 430, 133074, 10.1016/j.cej.2021.133074 Tian, 2019, Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose, Adv. Mater., 31, e1902977, 10.1002/adma.201902977 Yang, 2019, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors, Adv. Mater., 31, e1902725, 10.1002/adma.201902725 Liu, 2018, Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14, e1802479, 10.1002/smll.201802479 Jiang, 2018, Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties, J. Mater. Chem. C., 6, 8679, 10.1039/C8TC02900H Chen, 2019, Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors, Chem. Mater., 31, 3301, 10.1021/acs.chemmater.9b00259 Zeng, 2020, Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance, Adv. Sci., 7, 2000979, 10.1002/advs.202000979 Lin, 2020, MXene aerogel-based phase change materials toward solar energy conversion, Sol. Energ. Mater. Sol. Cells, 206, 110229, 10.1016/j.solmat.2019.110229 Tang, 2019, Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials, Sol. Energ. Mater. Sol. Cells, 203, 110229, 10.1016/j.solmat.2019.110174 Shi, 2019, Self-assembly of MXene-surfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels, Angew. Chem. Int. Ed., 58, 18171, 10.1002/anie.201908402 Wang, 2020, Hydrophobic silica nanorod arrays vertically grown on melamine foams for oil/water separation, ACS Appl. Nano Mater., 3, 1479, 10.1021/acsanm.9b02303 Wang, 2019, Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities, Adv. Compos. Hybrid Mater., 2, 743, 10.1007/s42114-019-00123-6 Du, 2018, Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal Insulation, Chem. Mater., 30, 6849, 10.1021/acs.chemmater.8b02926 Zu, 2018, Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying, ACS Nano., 12, 521, 10.1021/acsnano.7b07117 Hayase, 2013, Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water, Angew. Chem. Int. Ed., 52, 1986, 10.1002/anie.201207969 Nguyen, 2021, n-Octadecane/fumed silica phase change composite as building envelope for high energy efficiency, Nanomaterials, 11, 566, 10.3390/nano11030566 Zhang, 2012, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl. Energ., 91, 426, 10.1016/j.apenergy.2011.10.014 Du, 2013, A special material or a new state of matter: a review and reconsideration of the aerogel, Materials, 6, 941, 10.3390/ma6030941 Deng, 2021, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding, ACS Appl. Mater. Inter., 13, 20539, 10.1021/acsami.1c02059 Liang, 2021, Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance, ACS Nano., 15, 6622, 10.1021/acsnano.0c09982 Yang, 2018, Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials, Energy Stor. Mater., 13, 88, 10.1016/j.ensm.2017.12.028