MXene aerogel-based phase change film for synergistic thermal management inspired by antifreeze beetles
Tài liệu tham khảo
Heinrich, 2013
Walters, 2009, A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides, Proc. Natl. Acad. Sci. U S A, 106, 20210, 10.1073/pnas.0909872106
Qiu, 2010, Expression of biologically active recombinant antifreeze protein His-MpAFP149 from the desert beetle (Microdera punctipennis dzungarica) in Escherichia coli, Mol. Biol. Rep., 37, 1725, 10.1007/s11033-009-9594-3
Elnitsky, 2008, Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica, J. Exp. Biol., 211, 524, 10.1242/jeb.011874
Yeh, 1996, Antifreeze proteins: structures and mechanisms of function, Chem. Rev., 96, 601, 10.1021/cr950260c
Hudait, 2019, Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice, J. Am. Chem. Soc., 141, 7887, 10.1021/jacs.9b02248
Liu, 2016, Janus effect of antifreeze proteins on ice nucleation, Proc. Natl. Acad. Sci. U S A, 113, 14739, 10.1073/pnas.1614379114
Qiu, 2013, A novel function – thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis, Cryobiology, 66, 60, 10.1016/j.cryobiol.2012.11.005
Cui, 2013, Influence of indoor air temperature on human thermal comfort, motivation and performance, Build. Environ., 68, 114, 10.1016/j.buildenv.2013.06.012
Faraj, 2020, Phase change material thermal energy storage systems for cooling applications in buildings: a review, Renew. Sustain. Energ. Rev., 119, 109579, 10.1016/j.rser.2019.109579
Umair, 2019, Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review, Appl. Energ., 235, 846, 10.1016/j.apenergy.2018.11.017
Yan, 2021, Variation in cell membrane integrity and enzyme activity of the button mushroom (Agaricus bisporus) during storage and transportation, J. Food Sci. Technol., 58, 1655, 10.1007/s13197-020-04674-1
Ye, 2015, Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage, J. Mater. Chem. A., 3, 4018, 10.1039/C4TA05448B
Yan, 2021, Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage, Carbon, 176, 178, 10.1016/j.carbon.2020.12.035
Huang, 2019, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J., 356, 641, 10.1016/j.cej.2018.09.013
Zhang, 2018, Novel semi-interpenetrating network structural phase change composites with high phase change enthalpy, AIChE J., 64, 688, 10.1002/aic.15956
Wang, 2010, Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning, Macromol. Rapid Commun., 31, 1622, 10.1002/marc.201000185
Li, 2016, From anisotropic graphene aerogels to electron- and photo-driven phase change composites, J. Mater. Chem. A., 4, 17042, 10.1039/C6TA07587H
Lyu, 2019, Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth, ACS Nano., 13, 2236
Fang, 2017, Form-stable phase change material embedded with chitosan-derived carbon aerogel, Mater. Lett., 195, 79, 10.1016/j.matlet.2017.02.075
Li, 2018, Multiresponsive graphene-aerogel-directed phase-change smart fibers, Adv. Mater., 30, e1801754, 10.1002/adma.201801754
Zhao, 2019, Graphene oxide aerogel beads filled with phase change material for latent heat storage and release, ACS Appl. Energ. Mater., 2, 3657, 10.1021/acsaem.9b00374
Wang, 2020, Nanoporous boron nitride aerogel film and its smart composite with phase change materials, ACS Nano., 14, 16590, 10.1021/acsnano.0c05931
Zhong, 2013, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management, Sol. Energ. Mater. Sol. Cells, 113, 195, 10.1016/j.solmat.2013.01.046
Xia, 2017, Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity, J. Mater. Chem. A., 5, 15191, 10.1039/C7TA03432F
Cheng, 2018, A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes, Chem. Commun., 54, 11622, 10.1039/C8CC05866K
Xu, 2020, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications, Adv. Funct. Mater., 30, 2000712, 10.1002/adfm.202000712
Li, 2017, MXene Ti3C2: an effective 2D light-to-heat conversion material, ACS Nano., 11, 3752, 10.1021/acsnano.6b08415
Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Liu, 2022, Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application, Chem. Eng. J., 430, 133074, 10.1016/j.cej.2021.133074
Tian, 2019, Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose, Adv. Mater., 31, e1902977, 10.1002/adma.201902977
Yang, 2019, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors, Adv. Mater., 31, e1902725, 10.1002/adma.201902725
Liu, 2018, Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14, e1802479, 10.1002/smll.201802479
Jiang, 2018, Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties, J. Mater. Chem. C., 6, 8679, 10.1039/C8TC02900H
Chen, 2019, Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors, Chem. Mater., 31, 3301, 10.1021/acs.chemmater.9b00259
Zeng, 2020, Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance, Adv. Sci., 7, 2000979, 10.1002/advs.202000979
Lin, 2020, MXene aerogel-based phase change materials toward solar energy conversion, Sol. Energ. Mater. Sol. Cells, 206, 110229, 10.1016/j.solmat.2019.110229
Tang, 2019, Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials, Sol. Energ. Mater. Sol. Cells, 203, 110229, 10.1016/j.solmat.2019.110174
Shi, 2019, Self-assembly of MXene-surfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels, Angew. Chem. Int. Ed., 58, 18171, 10.1002/anie.201908402
Wang, 2020, Hydrophobic silica nanorod arrays vertically grown on melamine foams for oil/water separation, ACS Appl. Nano Mater., 3, 1479, 10.1021/acsanm.9b02303
Wang, 2019, Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities, Adv. Compos. Hybrid Mater., 2, 743, 10.1007/s42114-019-00123-6
Du, 2018, Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal Insulation, Chem. Mater., 30, 6849, 10.1021/acs.chemmater.8b02926
Zu, 2018, Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying, ACS Nano., 12, 521, 10.1021/acsnano.7b07117
Hayase, 2013, Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water, Angew. Chem. Int. Ed., 52, 1986, 10.1002/anie.201207969
Nguyen, 2021, n-Octadecane/fumed silica phase change composite as building envelope for high energy efficiency, Nanomaterials, 11, 566, 10.3390/nano11030566
Zhang, 2012, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl. Energ., 91, 426, 10.1016/j.apenergy.2011.10.014
Du, 2013, A special material or a new state of matter: a review and reconsideration of the aerogel, Materials, 6, 941, 10.3390/ma6030941
Deng, 2021, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding, ACS Appl. Mater. Inter., 13, 20539, 10.1021/acsami.1c02059
Liang, 2021, Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance, ACS Nano., 15, 6622, 10.1021/acsnano.0c09982
Yang, 2018, Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials, Energy Stor. Mater., 13, 88, 10.1016/j.ensm.2017.12.028