MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser

Science China Materials - Tập 64 - Trang 259-265 - 2020
Cong Wang1, Jiawei Xu1, Yunzheng Wang1, Yufeng Song1, Jia Guo1, Weichun Huang2, Yanqi Ge1, Lanping Hu2, Jie Liu3, Han Zhang1
1Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
2Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, China
3Shandong Provincial Engineering and Technical Center of Light Manipulation & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, China

Tóm tắt

具有良好单色性的可调谐光纤激光器是密集波分复用传输 系统中的关键组件. 传统的调制方法难与全光通信网络兼容. 本文 中, 我们利用MXene (Ti2NTx)的强光热效应, 对基于迈克尔逊干涉 仪的全光波长调谐光纤激光器进行了研究. 对于全光调制器来说, 信号光的相移, 随控制光功率具有0.03π mW−1的线性关系. 获得25 dB的调制深度, 有利于提高调制器的灵敏度以实现快速的波长扫描. 另外, 实现的全光波长调谐激光器具有大边模抑制比, 宽波长调谐范围和窄3-dB光谱宽度. 这种新颖的基于Ti2NTx的全光波长调谐器不仅扩展了全光调制器的应用领域, 而且也为基于Ti2NTx的异质结构提供了可扩展的可用性, 以构建高性能的全光纤激光器.

Tài liệu tham khảo

Jin L, Li R, Niu L, et al. Ultrafine frequency linearly tunable single-frequency fiber laser based on intracavity active tuning. IEEE Photonics J, 2020, 12: 1–6 Guay P, Genest J, Michaud-Belleau V, et al. Single-frequency mid-infrared waveguide laser. Opt Express, 2019, 27: 33737–33744 Herr SJ, Buse K, Breunig I. Tunable single-frequency lasing in a microresonator. Opt Express, 2019, 27: 15351–15358 Yin T, Song Y, Jiang X, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 mm waveband. Opt Express, 2019, 27: 15794–15799 Sun Z, Jiang X, Wen Q, et al. Single frequency fiber laser based on an ultrathin metal-organic framework. J Mater Chem C, 2019, 7: 4662–4666 Delgado-Pinar M, Mora J, Diez A, et al. Wavelength-switchable fiber laser using acoustic waves. IEEE Photon Technol Lett, 2005, 17: 552–554 Huang L, Chang P, Song X, et al. Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser. Opt Express, 2016, 24: 2406–2412 Kim CS, Farokhrooz FN, Kang JU. Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters. Opt Lett, 2004, 29: 1677–1679 Song YW, Havstad SA, Starodubov D, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. IEEE Photon Technol Lett, 2001, 13: 1167–1169 Wang Y, Zhang F, Tang X, et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev, 2018, 12: 1800016 Song Y, Liang Z, Jiang X, et al. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater, 2017, 4: 045010 Zheng J, Yang Z, Si C, et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics, 2017, 4: 1466–1476 Wang C, Wang Y, Jiang X, et al. MXene Ti3C2Tx: A promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv Opt Mater, 2019, 7: 1900060 Gan X, Zhao C, Wang Y, et al. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2: 468–471 Wu K, Guo C, Wang H, et al. All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt Express, 2017, 25: 17639–17649 Zheng J, Tang X, Yang Z, et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv Opt Mater, 2017, 5: 1700026 Wang Y, Huang W, Zhao J, et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J Mater Chem C, 2019, 7: 871–878 Pandey RP, Rasool K, Abdul Rasheed P, et al. Reductive sequestration of toxic bromate from drinking water using lamellar two-dimensional Ti3C2TX (MXene). ACS Sustain Chem Eng, 2018, 6: 7910–7917 Er D, Li J, Naguib M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces, 2014, 6: 11173–11179 Wang F, Yang CH, Duan CY, et al. An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electrochem Soc, 2015, 162: B16–B21 Jiang X, Liu S, Liang W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev, 2018, 12: 1700229–1700239 Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater, 2016, 6: 1600969 Jhon YI, Koo J, Anasori B, et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater, 2017, 29: 1702496 Lei JC, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Front Phys, 2015, 10: 276–286 Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098 Lai S, Jeon J, Jang SK, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O). Nanoscale, 2015, 7: 19390–19396 Ivashchenko VI, Turchi PEA, Shevchenko VI, et al. First-principles study of phase stability of Ti2N under pressure. Phys Rev B, 2012, 86: 064109 Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater, 2017, 29: 4848–4856 Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8: 11385–11391 Soundiraraju B, George BK. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 2017, 11: 8892–8900 Yu S, Zeng Q, Oganov AR, et al. Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. Phys Chem Chem Phys, 2015, 17: 11763–11769 Lin ZJ, Zhuo MJ, Li MS, et al. Synthesis and microstructure of layered-ternary Ti2AlN ceramic. Scripta Mater, 2007, 56: 1115–1118