MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors

Joule - Tập 3 - Trang 164-176 - 2019
Girish Sambhaji Gund1, Jeong Hee Park1, Rana Harpalsinh1, Manikantan Kota1, Joo Hwan Shin1, Tae-il Kim1, Yury Gogotsi2, Ho Seok Park1,3,4
1School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 440-746, Republic of Korea
2A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
3SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
4Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon 440-746, Republic of Korea

Tài liệu tham khảo

Lukatskaya, 2017, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2, 17105, 10.1038/nenergy.2017.105 Miller, 2008, Electrochemical capacitors: challenges and opportunities for real-world applications, Electrochem. Soc. Interfaces, 17, 53, 10.1149/2.F08081IF Miller, 2008, Electrochemical capacitors for energy management, Sci. Mag., 321, 651 El-Kady, 2013, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun., 4, 1475, 10.1038/ncomms2446 Yang, 2018, The role of geometric sites in 2D materials for energy storage, Joule, 2, 1075, 10.1016/j.joule.2018.04.027 Lin, 2012, 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance, Nano Lett., 13, 72, 10.1021/nl3034976 Cai, 2014, Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2, ACS Nano, 8, 5873, 10.1021/nn5009319 Dubal, 2018, Towards flexible solid-state supercapacitors for smart and wearable electronics, Chem. Soc. Rev., 47, 2065, 10.1039/C7CS00505A Liu, 2014, An all-in-one nanopore battery array, Nat. Nanotechnol., 9, 1031, 10.1038/nnano.2014.247 Augustyn, 2014, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597, 10.1039/c3ee44164d Pech, 2010, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol., 5, 651, 10.1038/nnano.2010.162 El-Kady, 2012, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326, 10.1126/science.1216744 Zhu, 2011, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537, 10.1126/science.1200770 Zhang, 2012, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors, Nano Lett., 12, 1806, 10.1021/nl203903z Miller, 2010, Graphene double-layer capacitor with ac line-filtering performance, Science, 329, 1637, 10.1126/science.1194372 Miller, 2010, Introduction to electrochemical capacitor technology, IEEE Electr. Insul. M., 26, 40, 10.1109/MEI.2010.5511188 Vlad, 2017, Supercapacitors: porous materials get energized, Nat. Mater., 16, 161, 10.1038/nmat4851 Kyeremateng, 2017, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nat. Nanotechnol., 12, 7, 10.1038/nnano.2016.196 Maleski, 2018, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes, ACS Appl. Mater. Interfaces, 10, 24491, 10.1021/acsami.8b04662 Tolbert, 1997, A new phase of oriented mesoporous silicate thin films, Chem. Mater., 9, 1962, 10.1021/cm960454o Pomerantseva, 2017, Two-dimensional heterostructures for energy storage, Nat. Energy, 2, 17089, 10.1038/nenergy.2017.89 Fan, 2017, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting, Nano Energy, 39, 306, 10.1016/j.nanoen.2017.06.048 Bao, 2018, Porous cryo-dried MXene for efficient capacitive deionization, Joule, 2, 778, 10.1016/j.joule.2018.02.018 Malik, 2018, Maxing out water desalination with MXenes, Joule, 2, 591, 10.1016/j.joule.2018.04.001 Kim, 2017, Redox-active polymers for energy storage nanoarchitectonics, Joule, 1, 739, 10.1016/j.joule.2017.08.018 Shahzad, 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137, 10.1126/science.aag2421 Lee, 2017, MoO3-induced oxidation doping of PEDOT: PSS for high performance full-solution-processed inverted quantum-dot light emitting diodes, J. Mater. Chem. C, 5, 10555, 10.1039/C7TC03700G Marzocchi, 2015, Physical and electrochemical properties of PEDOT: PSS as a tool for controlling cell growth, ACS Appl. Mater. Interfaces, 7, 17993, 10.1021/acsami.5b04768 Ouyang, 2013, “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices, Displays, 34, 423, 10.1016/j.displa.2013.08.007 Magnuson, 2018, Chemical bonding in carbide MXene nanosheets, J. Electron Spectrosc., 224, 27, 10.1016/j.elspec.2017.09.006 Kurra, 2016, Micro-pseudocapacitors with electroactive polymer electrodes: toward AC-line filtering applications, ACS Appl. Mater. Interfaces, 8, 12748, 10.1021/acsami.5b12784 Rangom, 2015, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance, ACS Nano, 9, 7248, 10.1021/acsnano.5b02075 Macdonald, 2005 Miller, 2014, 45 Rubinson, 2009, Charge transport in conducting polymers: insights from impedance spectroscopy, Chem. Soc. Rev., 38, 3339, 10.1039/b904083h Miller, 2008, Fundamentals of electrochemical capacitor design and operation, Electrochem. Soc. Interfaces, 17, 31, 10.1149/2.F02081IF Taberna, 2003, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc., 150, A292, 10.1149/1.1543948 Choi, 2011, Facilitated ion transport in all-solid-state flexible supercapacitors, ACS Nano, 5, 7205, 10.1021/nn202020w Wang, 2014, Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors, Sci. Rep., 4, 4452, 10.1038/srep04452 Albertsen, 2010 Yoo, 2016, Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering, J. Mater. Chem. A, 4, 5062, 10.1039/C6TA00921B Yoo, 2015, 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering, J. Mater. Chem. A, 3, 11801, 10.1039/C5TA02073E Wu, 2015, Ultrathin printable graphene supercapacitors with AC line-filtering performance, Adv. Mater., 27, 3669, 10.1002/adma.201501208 Kang, 2016, 3-V solid-state flexible supercapacitors with ionic-liquid-based polymer gel electrolyte for AC line filtering, ACS Appl. Mater. Interfaces, 8, 13909, 10.1021/acsami.6b02690 Lim, 2016, Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures, Nat. Commun., 7, 10364, 10.1038/ncomms10364 Zhang, 2016, An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT: PSS films for AC line-filtering, Energy Environ. Sci., 9, 2005, 10.1039/C6EE00615A Sheng, 2012, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2, 247, 10.1038/srep00247