MXene-Based Photocatalysts and Electrocatalysts for CO2 Conversion to Chemicals

Transactions of Tianjin University - Tập 28 Số 4 - Trang 307-322 - 2022
Tahta Amrillah1, Abdul Rohman Supandi2, Vinda Puspasari3, Angga Hermawan2, Zhi Wei Seh4
1Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, 60115, Indonesia
2Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
3Research Center for Metallurgy, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia
4Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis 138634, Singapore

Tóm tắt

AbstractThe interest in CO2 conversion to value-added chemicals and fuels has increased in recent years as part of strategic efforts to mitigate and use the excessive CO2 concentration in the atmosphere. Much attention has been given to developing two-dimensional catalytic materials with high-efficiency CO2 adsorption capability and conversion yield. While several candidates are being investigated, MXenes stand out as one of the most promising catalysts and co-catalysts for CO2 reduction, given their excellent surface functionalities, unique layered structures, high surface areas, rich active sites, and high chemical stability. This review aims to highlight research progress and recent developments in the application of MXene-based catalysts for CO2 conversion to value-added chemicals, paying special attention to photoreduction and electroreduction. Furthermore, the underlying photocatalytic and electrocatalytic CO2 conversion mechanisms are discussed. Finally, we provide an outlook for future research in this field, including photoelectrocatalysis and photothermal CO2 reduction.

Từ khóa


Tài liệu tham khảo

Su JJ, Liu Y, Song Y et al (2022) Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat 3(1):35–53

Wang BQ, Chen SH, Zhang ZD et al (2022) Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 3(1):84–110

Schouten KJP, Kwon Y, van der Ham CJM et al (2011) A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci 2(10):1902

Kuhl KP, Hatsukade T, Cave ER et al (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113

Kortlever R, Shen J, Schouten KJP et al (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6(20):4073–4082

Chang XX, Wang T, Gong JL (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9(7):2177–2196

Shehzad N, Tahir M, Johari K et al (2018) A critical review on TiO2 based photocatalytic CO2 reduction system strategies to improve efficiency. J CO2 Util 26:98–122

Ferreira de Brito J, Corradini PG, Silva AB et al (2021) Reduction of CO2 by photoelectrochemical process using non-oxide two-dimensional nanomaterials—a review. ChemElectroChem 8(22):4305–4320

Low J, Zhang LY, Tong T et al (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266

Nguyen VH, Nguyen BS, Jin Z et al (2020) Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J 402:126184

Xiao Y, Zhang WB (2020) High throughput screening of M3C2 MXenes for efficient CO2 reduction conversion into hydrocarbon fuels. Nanoscale 12(14):7660–7673

Ma WC, Xie SJ, Liu TT et al (2020) Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal 3(6):478–487

Zhang WJ, Hu Y, Ma LB et al (2017) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci (Weinh) 5(1):1700275

Sa YJ, Lee CW, Lee SY et al (2020) Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem Soc Rev 49(18):6632–6665

Li YW, Chan SH, Sun Q (2015) Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale 7(19):8663–8683

Seh ZW, Kibsgaard J, Dickens CF et al (2017) Combining theory and experiment in electrocatalysis insights into materials design. Science 355(6321):eaad4998

Naguib M, Mochalin VN, Barsoum MW et al (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005

Wang ZJ, Wang F, Hermawan A et al (2021) A facile method for preparation of porous nitrogen-doped Ti3C2Tx MXene for highly responsive acetone detection at high temperature. Funct Mater Lett 14(8):2151043

Alhabeb M, Maleski K, Anasori B et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644

Hermawan A, Amrillah T, Riapanitra A et al (2021) Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv Healthc Mater 10(20):e2100970

Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

Nemani SK, Zhang B, Wyatt BC et al (2021) High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15(8):12815–12825

Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253

Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13(8):8491–8494

Amrillah T, Hermawan A, Alviani VN et al (2021) MXenes and their derivatives as nitrogen reduction reaction catalysts: recent progress and perspectives. Mater Today Energy 22:100864

Bai SS, Yang MQ, Jiang JZ et al (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Mater Appl 5:78

Zubair M, Ul Hassan MM, Mehran MT et al (2022) 2D MXenes and their heterostructures for HER, OER and overall water splitting: a review. Int J Hydrog Energy 47(5):2794–2818

Chen Y, Liu C, Guo SE et al (2022) CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ 7(3):394–410

Handoko AD, Steinmann SN, Seh ZW (2019) Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horiz 4(4):809–827

Li X, Yu JG, Jaroniec M et al (2019) Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev 119(6):3962–4179

Wang ZJ, Wang F, Hermawan A et al (2022) Surface engineering of Ti3C2Tx MXene by oxygen plasma irradiation as room temperature ethanol sensor. Funct Mater Lett 15(1):2251007

Wang Y, Nian Y, Biswas AN et al (2021) Challenges and opportunities in utilizing MXenes of carbides and nitrides as electrocatalysts. Adv Energy Mater 11(3):2002967

Guo ZL, Li Y, Sa BS et al (2020) M2C-type MXenes: promising catalysts for CO2 capture and reduction. Appl Surf Sci 521:146436

Li N, Chen XZ, Ong WJ et al (2017) Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11(11):10825–10833

Handoko AD, Khoo KH, Tan TL et al (2018) Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. J Mater Chem A 6(44):21885–21890

Hoang VC, Bui TS, Nguyen HTD et al (2021) Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: fundamental mechanisms and recent progress. Environ Res 202:111781

Wang JJ, Lin S, Tian N et al (2021) Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Adv Funct Mater 31(9):2008008

Liu XJ, Chen TQ, Xue YH et al (2022) Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord Chem Rev 459:214440

He YQ, Li CG, Chen XB et al (2020) Critical aspects of metal-organic framework-based materials for solar-driven CO2 reduction into valuable fuels. Glob Chall 5(2):2000082

Mohamed AGA, Huang YY, Xie JF et al (2020) Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction. Nano Today 33:100891

Yang Y, Yin LC, Gong Y et al (2018) An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv Mater 30(6):1704479

Wang L, Nitopi SA, Bertheussen E et al (2018) Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal 8(8):7445–7454

Vidal AB, Feria L, Evans J et al (2012) CO2 activation and methanol synthesis on novel Au/TiC and Cu/TiC catalysts. J Phys Chem Lett 3(16):2275–2280

Nguyen TN, Guo JX, Sachindran A et al (2021) Electrochemical CO2 reduction to ethanol: from mechanistic understanding to catalyst design. J Mater Chem A 9(21):12474–12494

Fan Q, Zhang ML, Jia MW et al (2018) Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater Today Energy 10:280–301

Li MH, Wang HF, Luo W et al (2020) Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater 32(34):e2001848

Zhang RZ, Wu BY, Li Q et al (2020) Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination chemistry. Coord Chem Rev 422:213436

Im JK, Sohn EJ, Kim S et al (2021) Review of MXene-based nanocomposites for photocatalysis. Chemosphere 270:129478

Shen JY, Shen J, Zhang WJ et al (2019) Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceram Int 45(18):24146–24153

Wang K, Wang QP, Zhang KJ et al (2022) Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. J Mater Sci Technol 124:202–208

Li X, Bai Y, Shi X et al (2021) Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction. Appl Surf Sci 546:149111

Hermawan A, Hasegawa T, Asakura Y et al (2021) Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: role of Ti and C doping. Sep Purif Technol 270:118815

He F, Zhu BC, Cheng B et al (2020) 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B Environ 272:119006

Tahir M, Sherryna A, Mansoor R et al (2022) Titanium carbide MXene nanostructures as catalysts and cocatalysts for photocatalytic fuel production: a review. ACS Appl Nano Mater 5(1):18–54

Sun YL, Meng X, Dall’Agnese Y et al (2019) 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nanomicro Lett 11(1):79

Li QL, Song T, Zhang YP et al (2021) Boosting photocatalytic activity and stability of lead-free Cs3Bi2Br9 perovskite nanocrystals via in situ growth on monolayer 2D Ti3C2Tx MXene for C–H bond oxidation. ACS Appl Mater Interfaces 13(23):27323–27333

Que MD, Zhao Y, Yang YW et al (2021) Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl Mater Interfaces 13(5):6180–6187

Zhang YY, Chen W, Zhou M et al (2021) Efficient photocatalytic CO2 reduction by the construction of Ti3C2/CsPbBr3 QD composites. ACS Appl Energy Mater 4(9):9154–9165

Zhang ZP, Wang BZ, Zhao HB et al (2022) Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Appl Catal B Environ 312:121358

Zhao S, Pan D, Liang Q et al (2021) Ultrathin NiAl-Layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core–shell heterostructures for enhanced photocatalytic CO2 Reduction. J Phys Chem C 125:10207–10218

Chen WY, Han B, Xie YL et al (2020) Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem Eng J 391:123519

Ali Khan A, Tahir M (2022) Constructing S-scheme heterojunction of CoAlLa-LDH/g-C3N4 through monolayer Ti3C2-MXene to promote photocatalytic CO2 re-forming of methane to solar fuels. ACS Appl Energy Mater 5(1):784–806

Hong LF, Guo RT, Yuan Y et al (2022) 2D Ti3C2 decorated Z-scheme BiOIO3/g-C3N4 heterojunction for the enhanced photocatalytic CO2 reduction activity under visible light. Colloids Surf A Physicochem Eng Aspects 639:128358

Cao SW, Shen BJ, Tong T et al (2018) 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater 28(21):1800136

Tahir M, Tahir B (2021) In-situ growth of TiO2 imbedded Ti(3)C(2)TA nanosheets to construct PCN/Ti3C2TA MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO2 reduction towards CO and CH4 production. J Colloid Interface Sci 591:20–37

Song QJ, Shen BJ, Yu JG et al (2021) A 3D hierarchical Ti3C2Tx/TiO2 heterojunction for enhanced photocatalytic CO2 reduction. ChemNanoMat 7(8):910–915

Li L, Yang Y, Yang LQ et al (2021) 3D hydrangea-like InVO4/Ti3C2Tx hierarchical heterosystem collaborating with 2D/2D interface interaction for enhanced photocatalytic CO2 reduction. ChemNanoMat 7(7):815–823

Saeed A, Chen W, Shah AH et al (2021) Enhancement of photocatalytic CO2 reduction for novel Cd0.2Zn0.8S@Ti3C2 (MXenes) nanocomposites. J CO2 Util 47:101501

Wang K, Li X, Wang N et al (2021) Z-scheme core–shell meso-TiO2@ZnIn2S4/Ti3C2 MXene enhances visible light-driven CO2-to-CH4 selectivity. Ind Eng Chem Res 60:8720–8732

Yang C, Tan QY, Li Q et al (2020) 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea. Appl Catal B Environ 268:118738

Hu JM, Ding J, Zhong Q (2021) Ultrathin 2D Ti3C2 MXene Co-catalyst anchored on porous g-C3N4 for enhanced photocatalytic CO2 reduction under visible-light irradiation. J Colloid Interface Sci 582(Pt B):647–657

Khan AA, Tahir M, Bafaqeer A (2020) Constructing a stable 2D layered Ti3C2 MXene cocatalyst-assisted TiO2/g-C3N4/Ti3C2 heterojunction for tailoring photocatalytic bireforming of methane under visible light. Energy Fuels 34(8):9810–9828

Zhang RR, Jin JY, Jia LM et al (2022) Fabrication of CdS/Ti3C2/g-C3N4NS Z-scheme composites with enhanced visible light-driven photocatalytic activity. Environ Sci Pollut Res Int 29(11):16371–16382

Tahir M, Tahir B (2020) 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem Eng J 400:125868

Wang H, Tang Q, Wu Z (2021) Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain Chem Eng 45(18):24656–24663

Yu KF, Wang SM, Li Q et al (2022) Au atoms doped in Ti3C2Tx MXene: benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Res 15(4):2862–2869

Qu D, Peng XY, Mi YY et al (2020) Nitrogen doping and titanium vacancies synergistically promote CO2 fixation in seawater. Nanoscale 12(33):17191–17195

Tang QJ, Sun ZX, Deng S et al (2020) Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J Colloid Interface Sci 564:406–417

Ye MH, Wang X, Liu EZ et al (2018) Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. Chemsuschem 11(10):1606–1611

Zeng ZP, Yan YB, Chen J et al (2019) Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater 29(2):1806500

Pan AZ, Ma XQ, Huang SY et al (2019) CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic Co2 reduction. J Phys Chem Lett 10(21):6590–6597

Kim S, Zhang YJ, Bergstrom H et al (2016) Understanding the low-overpotential production of CH4 from CO2 on Mo2C catalysts. ACS Catal 6(3):2003–2013

Liu JP, Peng WC, Li Y et al (2020) 2D MXene-based materials for electrocatalysis. Trans Tianjin Univ 26(3):149–171

Papadopoulou KA, Chroneos A, Parfitt D et al (2020) A perspective on MXenes: their synthesis, properties, and recent applications. J Appl Phys 128(17):170902

Xu C, Wang LB, Liu ZB et al (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14(11):1135–1141

Jiang XT, Kuklin AV, Baev A et al (2020) Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys Rep 848:1–58

Chen HT, Handoko AD, Xiao JW et al (2019) Catalytic effect on CO2 electroreduction by hydroxyl-terminated two-dimensional MXenes. ACS Appl Mater Interfaces 11(40):36571–36579

Chen HT, Handoko AD, Wang TS et al (2020) Defect-enhanced CO2 reduction catalytic performance in O-terminated MXenes. Chemsuschem 13(21):5690–5698

Li Y, Chen YP, Guo ZL et al (2022) Breaking the linear scaling relations in MXene catalysts for efficient CO2 reduction. Chem Eng J 429:132171

Zhang Y, Cao Z (2021) Tuning the activity of molybdenum carbide MXenes for CO2 electroreduction by embedding the single transition-metal atom. J Phys Chem C 125(24):13331–13342

Baskaran S, Jung J (2022) Mo2CS2-MXene supported single-atom catalysts for efficient and selective CO2 electrochemical reduction. Appl Surf Sci 592:153339

Handoko AD, Fredrickson KD, Anasori B et al (2018) Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl Energy Mater 1(1):173–180

Lim KRG, Handoko AD, Nemani SK et al (2020) Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14(9):10834–10864

Handoko AD, Chen HT, Lum Y et al (2020) Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. iScience 23(6):101181

Attanayake NH, Banjade HR, Thenuwara AC et al (2021) Electrocatalytic CO2 reduction on earth abundant 2D Mo2C and Ti3C2 MXenes. Chem Commun 57(13):1675–1678

Eid K, Lu QQ, Abdel-Azeim S et al (2022) Highly exfoliated Ti3C2Tx MXene nanosheets atomically doped with Cu for efficient electrochemical CO2 reduction: an experimental and theoretical study. J Mater Chem A 10(4):1965–1975

Zhao Q, Zhang C, Hu RM et al (2021) Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15(3):4927–4936

Kannan K, Sliem MH, Abdullah AM et al (2020) Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10(5):549

Xu YJ, Wang F, Zhao D et al (2022) Two-dimensional TiO2/MXene Ti3CN heterojunction for highly efficient photoelectrocatalytic CO2 reduction. SSRN J. https://doi.org/10.2139/ssrn.4076641

Xu YJ, Wang S, Yang J et al (2018) Highly efficient photoelectrocatalytic reduction of CO2 on the Ti3C2/g-C3N4 heterojunction with rich Ti3+ and pyri-N species. J Mater Chem A 6(31):15213–15220

Wu ZY, Li CR, Li Z et al (2021) Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 15(3):5696–5705

Xu DX, Li ZD, Li LS et al (2020) Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater 30(47):2000712

Zhang F, Li YH, Qi MY et al (2021) Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal 1(2):272–297

Li RY, Zhang LB, Shi L et al (2017) MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4):3752–3759

Decker F, Cattarin S (2009) Photoelectrochemical cells | overview. Encycl Electrochem Power Sources. https://doi.org/10.1016/B978-044452745-5.00035-6

Fan XQ, Liu L, Jin X et al (2019) MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J Mater Chem A 7(23):14319–14327