MXene: An emerging material for sensing and biosensing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bhimanapati, 2015, Recent advances in two dimensional materials beyond graphene, ACS Nano, 9, 11509, 10.1021/acsnano.5b05556
Tang, 2013, Graphene analogous low dimensional materials, Prog. Mater. Sci., 58, 1244, 10.1016/j.pmatsci.2013.04.003
Huang, 2018, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications, Chem. Soc. Rev.
Naguib, 2014, MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138
Anasori, 2015, Two dimensional, ordered, double transition metals carbides (MXenes), ACS Nano, 9, 9507, 10.1021/acsnano.5b03591
Naguib, 2011, Two dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Barsoum, 2000, The Mn+1AXn phases: a new class of solids, Prog. Solid St. Chem., 28, 201, 10.1016/S0079-6786(00)00006-6
Zhu, 2017, Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev., 352, 306, 10.1016/j.ccr.2017.09.012
Ng, 2017, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications, J. Mater. Chem. A, 5, 3039, 10.1039/C6TA06772G
Lei, 2015, Recent advances in MXene: preparation, properties and applications, Front. Phys., 10, 107303, 10.1007/s11467-015-0493-x
Gao, 2017, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction, ACS Catal., 7, 494, 10.1021/acscatal.6b02754
Zhang, 2016, Self reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity, ACS Sustain. Chem. Eng., 4, 6763, 10.1021/acssuschemeng.6b01698
Xie, 2013, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction, Chem. Commun., 49, 10112, 10.1039/c3cc44428g
Ran, 2017, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8, 13907, 10.1038/ncomms13907
Ling, 2016, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor, Chem. Mater., 28, 9026, 10.1021/acs.chemmater.6b03972
Choudhary, 2017, MXene: an emerging two-dimensional material for future energy conversion and storage applications, J. Mater. Chem. A, 5, 24564, 10.1039/C7TA09094C
Zhang, 2018, MXene-based materials for electrochemical energy storage, J. Energy Chem., 27, 73, 10.1016/j.jechem.2017.08.004
Tang, 2012, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc., 134, 16909, 10.1021/ja308463r
Mashtalir, 2014, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A, 2, 14334, 10.1039/C4TA02638A
Liu, 2016, Preparation and methane adsorption of two-dimensional carbide Ti2C, Adsorption, 22, 915, 10.1007/s10450-016-9795-8
Liu, 2017, Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties, Appl. Surf. Sci., 416, 781, 10.1016/j.apsusc.2017.04.239
Wang, 2016, Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene, ACS Appl. Mater. Interfaces, 8, 16396, 10.1021/acsami.6b02989
Ying, 2015, Two dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water, ACS Appl. Mater. Interfaces, 7, 1795, 10.1021/am5074722
Eklund, 2017, Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin film perspective, J. Phys. D Appl. Phys., 50, 113001, 10.1088/1361-6463/aa57bc
Khazaei, 2013, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater., 23, 2185, 10.1002/adfm.201202502
Shein, 2013, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro Nano Lett., 8, 59, 10.1049/mnl.2012.0797
Paul, 2017, Properties at the interface of graphene and Ti2C MXene, Phys. Rev. B, 96, 035437
Berdiyorov, 2015, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene, Exploring Front. Phys., 111, 67002
Chen, 2017, Prediction of T and H phase two dimensional transition metal carbides/nitrides and their semiconducting metallic phase transition, ChemPhysChem, 18, 1897, 10.1002/cphc.201700111
Dhanjai, 2017, Amperometric response characteristics of rabeprazole at N-doped CNTs-chitosan nanosensor in solubilized system, J. Electrochem. Soc., 164, H639, 10.1149/2.1081709jes
Sinha, 2015, Electrocatalytic determination of a 2-adrenergic agonist tizanidine at graphene–silicon dioxide nanocomposite sensor, Mater. Res. Bull., 65, 307, 10.1016/j.materresbull.2015.02.001
Kim, 2016, A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2–graphene composite, Sci. Rep., 6, 34587, 10.1038/srep34587
Dhanjai, 2018, Voltammetric sensing of biomolecules at carbon based electrode interfaces: a review, TrAC Trends Anal. Chem. (Ref. Ed.), 98, 174, 10.1016/j.trac.2017.11.010
Sinha, 2018, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review, TrAC Trends Anal. Chem. (Ref. Ed.), 102, 75, 10.1016/j.trac.2018.01.008
Rather, 2018, Graphene interface for detection of resorcinol an endocrine disruptor in solubilized ionic liquid system: electrochemical and COSMO-RS quantum studies, J. Electrochem. Soc., 165, H57, 10.1149/2.1241802jes
Rather, 2018, Graphene amplified femtosensitive aptasensing of estradiol, an endocrine disruptor, Analyst, 143, 1835, 10.1039/C7AN02092A
Rakhi, 2016, Novel amperometric glucose biosensor based on MXene nanocomposite, Sci. Rep., 6, 36422, 10.1038/srep36422
Wang, 2015, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc., 162, B16, 10.1149/2.0371501jes
Liu, 2015, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene–Ti3C2, Sens. Actuat. B, 218, 60, 10.1016/j.snb.2015.04.090
Wang, 2015, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator free biosensor with excellent performances, Biosens. Bioelectron., 74, 1022, 10.1016/j.bios.2015.08.004
Zheng, 2018, An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide, J. Electrochem. Soc., 165, B227, 10.1149/2.0051807jes
Lorencova, 2018, Highly stable Ti3C2Tx–(MXene)/Pt nanoparticles modified glassycarbon electrode for H2O2 and small molecules sensing applications, Sens. Actuat. B Chem., 263, 360, 10.1016/j.snb.2018.02.124
Lorencova, 2017, Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing, Electrochim. Acta, 235, 471, 10.1016/j.electacta.2017.03.073
Wu, 2018, 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol, Biosens. Bioelectron., 107, 69, 10.1016/j.bios.2018.02.021
Zhu, 2017, Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II), Electrochim. Acta, 248, 46, 10.1016/j.electacta.2017.07.084
Rasheed, 2018, Ultra sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode, Sens. Actuat. B Chem., 265, 652, 10.1016/j.snb.2018.03.103
Zhou, 2017, Acetylcholinesterase/chitosan-transition metal carbides nanocomposites based biosensor for the organophosphate pesticides detection, Biochem. Engineer. J, 128, 243, 10.1016/j.bej.2017.10.008
Xu, 2016, Ultrathin MXene micropattern based field-effect transistor for probing neural activity, Adv. Mater., 28, 3333, 10.1002/adma.201504657
Kim, 2018, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano, 12, 986, 10.1021/acsnano.7b07460
Yu, 2015, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces, 7, 13707, 10.1021/acsami.5b03737
Xiao, 2016, MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection, Sens. Actuat. B, 235, 103, 10.1016/j.snb.2016.05.062
Lee, 2017, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS Appl. Mater. Interfaces, 9, 37184, 10.1021/acsami.7b11055
Cai, 2018, Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range, ACS Nano, 12, 56, 10.1021/acsnano.7b06251
Ma, 2017, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances, Nat. Commun., 8, 1207, 10.1038/s41467-017-01136-9
Xue, 2017, Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging, Adv. Mater., 29, 1604847, 10.1002/adma.201604847
Chen, 2018, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor, Nanoscale, 10, 1111, 10.1039/C7NR06958H
Fang, 2018, Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine, Sens. Actuat, B, 263, 400, 10.1016/j.snb.2018.02.102
Jhon, 2018, First-principles study of a MXene terahertz detector, Nanoscale, 10, 69, 10.1039/C7NR05351G
Sarycheva, 2017, Two dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate, J. Phys. Chem. C, 121, 19983, 10.1021/acs.jpcc.7b08180
Fei, 2018, Polybenzimidazole/MXene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells, Nanotechnology, 29, 035403, 10.1088/1361-6528/aa9ab0
Jastrzebska, 2017, In vitro studies on cytotoxicity of delaminated Ti3C2 MXene, J. Hazard. Mater., 339, 1, 10.1016/j.jhazmat.2017.06.004