10.1016/j.neucom.2018.02.103
10.1109/ICIP.2019.8803814
10.1109/TCSVT.2020.3044451
10.1109/TITS.2017.2750080
10.1109/TPAMI.2020.2982166
10.1109/TCSVT.2018.2890271
10.1109/TCSVT.2020.3027732
10.1109/ICASSP.2018.8462601
10.1109/ICCV48922.2021.00475
10.1109/TCSVT.2015.2475895
Bell-Kligler, 2019, Blind super-resolution kernel estimation using an internal-GAN, arXiv:1909.06581
10.1109/WACV48630.2021.00167
10.1109/CVPR46437.2021.01047
10.1109/CVPR46437.2021.01046
10.1109/CVPR46437.2021.01044
10.1109/CVPRW53098.2021.00031
10.1007/s11263-019-01285-y
10.1109/TPAMI.2015.2439281
10.1109/TCSVT.2019.2915238
10.1109/CVPR46437.2021.01322
Ma, 2019, A matrix-in-matrix neural network for image super resolution, arXiv:1903.07949
10.1109/IRCE50905.2020.9199245
10.1109/CVPR42600.2020.00357
10.1109/TCSVT.2019.2917511
10.1016/j.patcog.2020.107475
10.1109/CVPR46437.2021.00300
10.1109/CVPR46437.2021.01351
10.1007/978-3-030-11021-5_5
10.1016/j.patcog.2020.107453
Wong, 2020, Perceptual image super-resolution with progressive adversarial network, arXiv:2003.03756
Muhammad Umer, 2020, Deep generative adversarial residual convolutional networks for real-world super-resolution, arXiv:2005.00953
Zhong, 2020, Optimizing generative adversarial networks for image super resolution via latent space regularization, arXiv:2001.08126
10.1109/CVPR46437.2021.00776
10.1109/TCSVT.2015.2426498
10.1109/TCSVT.2015.2400772
10.1109/CVPR42600.2020.01251
10.1007/978-3-319-24574-4_28
10.1109/JBHI.2020.3042069
10.1109/CVPR46437.2021.00497
10.1109/CVPR.2009.5206815
10.1007/978-3-030-01234-2_18
10.1007/978-3-030-58595-2_12