MPF-net: An effective framework for automated cobb angle estimation
Tài liệu tham khảo
Anitha, 2014, Automatic extraction of vertebral endplates from scoliotic radiographs using customized filter, Biomed. Eng. Lett., 4, 158, 10.1007/s13534-014-0129-z
Anitha, 2012, Automatic quantification of spinal curvature in scoliotic radiograph using image processing, J. Med. Syst., 36, 1943, 10.1007/s10916-011-9654-9
Chen, 2020
Cobb, 1947, Outline for the study of scoliosis, Instruct. Course Lect., 5
Girshick, 2015, Fast R-CNN, Comput. Sci.
Gstoettner, 2007, Inter- and intra-observer reliability assessment of the cobb angle: manual versus digital measurement tools, Eur. Spine J., 16, 1587, 10.1007/s00586-007-0401-3
Havaei, 2017, Brain tumor segmentation with deep neural networks, Med. Image Anal., 35, 18, 10.1016/j.media.2016.05.004
He, 2017, Mask R-CNN, 2961
He, 2016, Deep residual learning for image recognition, 770
Horng, 2019, Cobb angle measurement of spine from x-ray images using convolutional neural network, Comput. Math. Methods Med., 2019, 10.1155/2019/6357171
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications.
Hu, 2018, Relation networks for object detection
Huang, 2017, Densely connected convolutional networks, 4700
iek, 2016
Junhua, 2009, Automatic cobb measurement of scoliosis based on fuzzy hough transform with vertebral shape prior, J. Digit. Imaging
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks
Lee, 2020, Centermask: real-time anchor-free instance segmentation
Lin, 2017, Feature pyramid networks for object detection, 2117
Lin, 2017, Focal loss for dense object detection, 2980
Liu, 2016
Long, 2015, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39, 640
Redmon, 2016, You only look once: unified, real-time object detection
Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. arXiv:1506.01497.
Ronneberger, 2015, U-net: Convolutional networks for biomedical image segmentation, 234
Sardjono, 2013, Automatic cobb angle determination from radiographic images, Spine, 38, E1256, 10.1097/BRS.0b013e3182a0c7c3
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
Steven, 2004, The impact of positive sagittal balance in adult spinal deformity, Spine J.
Sun, 2017, Direct estimation of spinal cobb angles by structured multi-output regression
Sun, 2019, Deep high-resolution representation learning for human pose estimation, 5693
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need.
Wang, 2019, Accurate automated cobb angles estimation using multi-view extrapolation net, Med. Image Anal., 58, 101542, 10.1016/j.media.2019.101542
Wang, 2017, Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation, Med. Image Anal., 40, 172, 10.1016/j.media.2017.06.014
Wu, H., Bailey, C., Rasoulinejad, P., Li, S., 2017. Automatic landmark estimation for adolescent idiopathic scoliosis assessment using boostnet.
Wu, 2018, Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-net, Med. Image Anal., 48, 1, 10.1016/j.media.2018.05.005
Zhang, 2010, Computer-aided assessment of scoliosis on posteroanterior radiographs, Med. Biol. Eng. Comput, 48, 185, 10.1007/s11517-009-0556-7
Zhang, 2019, An automated cobb angle estimation method using convolutional neural network with area limitation, 775