MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks

Biparnak Roy1, Suman Nandy1, Debojit Ghosh1, Debarghya Dutta2, Pritam Biswas1, Tamodip Das2
1Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India
2Electrical Engineering, Jadavpur University, Kolkata, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255

Everingham M, Eslami SMA, Van Gool L, Williams CKI, Winn J, Zisserman A (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136

Girshick R (2015) Fast r-cnn

Girshick R, Donahue J, Darrell T, Malik J (2013) Rich feature hierarchies for accurate object detection and semantic segmentation

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition

He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Efficient convolutional neural networks for mobile vision applications, Mobilenets

Hsun TC (2020) Medical masks dataset, 02

Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely connected convolutional networks

Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K (2016) Speed/accuracy trade-offs for modern convolutional object detectors

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<0.5mb model size

Kashyap A, Suresh B, Patil A, Sharma S, Jaiswal A (2018) Automatic number plate recognition. In: 2018 international conference on advances in computing, communication control and networking (ICACCCN), pp 838–843

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems - volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA, Curran Associates Inc

Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nat Cell Biol 521(7553):436–444

Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Lawrence Zitnick C, Dollár P (2014) Microsoft coco: Common objects in context

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2015) Ssd: Single shot multibox detector

Nieto-Rodríguez, Mucientes M, Brea VM (2018) Mask and maskless face classification system to detect breach protocols in the operating room. In: Proceedings of the 9th international conference on distributed smart cameras, ICDSC ’15, page 207–208, Association for Computing Machinery, New York, NY, USA

Pedoeem J, Huang R (2018) Yolo-lite: a real-time object detection algorithm optimized for non-gpu computers

Qian Z, Xu D (2009) Research advances in face recognition. In: 2009 Chinese conference on pattern recognition, pp 1–5

Redmon J, Farhadi A (2016) Yolo9000: better, faster, stronger

Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv

Redmon J, Santosh D, Ross G, Farhadi A (2015) Unified, real-time object detection, you only look once

Ren S, He K, Girshick R, Jian S (2015) Towards real-time object detection with region proposal networks, Faster r-cnn

Ronneberger O, Fischer P, Thomas B (2015) Convolutional networks for biomedical image segmentation, U-net

Sage K, Young S (1999) Security applications of computer vision. IEEE Aerosp Electron Syst Mag 14(4):19–29

Samaga YB (2018) Opencv with cuda support. https://github.com/YashasSamaga/opencv

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: inverted residuals and linear bottlenecks

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

Tzutalin. Labelimg. https://github.com/tzutalin/labelImg, 2015

Womg A, Shafiee MJ, Li F, Chwyl B (2018) Tiny SSD: a tiny single-shot detection deep convolutional neural network for real-time embedded object detection. In: 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, pp 95–101. https://doi.org/10.1109/CRV.2018.00023

Xiangyu Z, Xinyu Z, Mengxiao L, Sun J (2017) An extremely efficient convolutional neural network for mobile devices, Shufflenet