MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255
Everingham M, Eslami SMA, Van Gool L, Williams CKI, Winn J, Zisserman A (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136
Girshick R, Donahue J, Darrell T, Malik J (2013) Rich feature hierarchies for accurate object detection and semantic segmentation
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Efficient convolutional neural networks for mobile vision applications, Mobilenets
Hsun TC (2020) Medical masks dataset, 02
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K (2016) Speed/accuracy trade-offs for modern convolutional object detectors
Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<0.5mb model size
Kashyap A, Suresh B, Patil A, Sharma S, Jaiswal A (2018) Automatic number plate recognition. In: 2018 international conference on advances in computing, communication control and networking (ICACCCN), pp 838–843
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems - volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA, Curran Associates Inc
Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nat Cell Biol 521(7553):436–444
Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Lawrence Zitnick C, Dollár P (2014) Microsoft coco: Common objects in context
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2015) Ssd: Single shot multibox detector
Nieto-Rodríguez, Mucientes M, Brea VM (2018) Mask and maskless face classification system to detect breach protocols in the operating room. In: Proceedings of the 9th international conference on distributed smart cameras, ICDSC ’15, page 207–208, Association for Computing Machinery, New York, NY, USA
Pedoeem J, Huang R (2018) Yolo-lite: a real-time object detection algorithm optimized for non-gpu computers
Qian Z, Xu D (2009) Research advances in face recognition. In: 2009 Chinese conference on pattern recognition, pp 1–5
Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv
Redmon J, Santosh D, Ross G, Farhadi A (2015) Unified, real-time object detection, you only look once
Ren S, He K, Girshick R, Jian S (2015) Towards real-time object detection with region proposal networks, Faster r-cnn
Ronneberger O, Fischer P, Thomas B (2015) Convolutional networks for biomedical image segmentation, U-net
Sage K, Young S (1999) Security applications of computer vision. IEEE Aerosp Electron Syst Mag 14(4):19–29
Samaga YB (2018) Opencv with cuda support. https://github.com/YashasSamaga/opencv
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: inverted residuals and linear bottlenecks
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308
Tzutalin. Labelimg. https://github.com/tzutalin/labelImg, 2015
Womg A, Shafiee MJ, Li F, Chwyl B (2018) Tiny SSD: a tiny single-shot detection deep convolutional neural network for real-time embedded object detection. In: 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, pp 95–101. https://doi.org/10.1109/CRV.2018.00023
Xiangyu Z, Xinyu Z, Mengxiao L, Sun J (2017) An extremely efficient convolutional neural network for mobile devices, Shufflenet