MOOSE: A parallel computational framework for coupled systems of nonlinear equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Advanced Visual Systems (AVS). http://www.avs.com.
Ainsworth, 2000
Ascher, 1998
Babuška, 1994, The p and h–p versions of the finite element method, basic principles and properties, SIAM Rev., 36, 578, 10.1137/1036141
Berndt, 2008, Efficient nonlinear solvers for Laplace-Beltrami smoothing of three-dimensional unstructured grids, Comput. Math. Appl., 55, 2791, 10.1016/j.camwa.2007.10.029
Braess, 2001
Brenner, 2002
Briggs, 2000
Carey, 1997
Chacon, 2002, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys., 178, 15, 10.1006/jcph.2002.7015
Electric Power Research Institute, 2008. Frequently asked questions: fuel reliability guidelines. http://mydocs.epri.com/docs/public/FRP%20DEL%20FAQ1c.pdf.
Hennigan, G., Shadid, J., 1997. NEMESIS I: a set of functions for describing unstructured finite-element data on parallel computers. Technical report, Sandia National Laboratories.
Hohorst, J.K., 1990. SCDAP/RELAP5/MOD2 code manual, volume 4: MATPRO–a library of materials properties for light-water-reactor accident analysis. Technical report, NUREG/CR-5273, EGG-2555.
I-deas NX. http://www.plm.automation.siemens.com/en_us/products/nx/.
Kelly, 1983, A posteriori error analysis and adaptive processes in the finite element method: Part I-Error analysis, Int. J. Numer. Methods Eng., 19, 10.1002/nme.1620191103
Killeen, 2007, Fuel modelling at extended burnup: IAEA coordinated research project FUMEX-II
Kirk, 2006, libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng Comput-Germany, 22, 237, 10.1007/s00366-006-0049-3
Knoll, 2004, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357, 10.1016/j.jcp.2003.08.010
Knoll, 2000, A multigrid preconditioned Newton–Krylov method, SIAM J. Sci. Comput., 21, 691, 10.1137/S1064827598332709
Knoll, 2003, On balanced approximations for time integration of multiple time scale systems, J. Comput. Phys., 185, 583, 10.1016/S0021-9991(03)00008-1
Martineau, 2008, The need for all-speed flow models for density driven flows in reactor safety simulation, 638
Mousseau, 2006, Temporal accuracy of the nonequilibrium radiation diffusion equations applied to two-dimensional multimaterial simulations, Nucl. Sci. Eng., 154, 174, 10.13182/NSE06-A2624
Mousseau, 2000, Physics based preconditioning and the Newton–Krylov method for nonequilibrium radiation diffusion, J. Comput. Phys., 160, 743, 10.1006/jcph.2000.6488
Mousseau, 2007, Accurate solution of the nonlinear partial differential equations from thermal hydraulics, Journal of Nuclear Technology, 159, 26, 10.13182/NT07-A3822
Newman, 2009, Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods, J. Nucl. Mater., 392, 6, 10.1016/j.jnucmat.2009.03.035
Niessen, 1997, Data sets of SANA experiment: JUEL-3409, Forschungszentrum Jülich
Ortega, F.A., 2008. General mesh viewer user’s manual. Technical Report LA-UR-95–2986, Los Alamos National Laboratory, http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html.
Pernice, 1998, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comp., 19, 302, 10.1137/S1064827596303843
Ropp, 2005, Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems, J. Comput. Phys., 203, 449, 10.1016/j.jcp.2004.09.004
Ropp, 2004, Studies of the accuracy of time integration methods for reaction-diffusion equations, J. Comput. Phys., 194, 544, 10.1016/j.jcp.2003.08.033
Saad, 1995
Schoof, L., Yarberry V., 1996. EXODUS II: A finite element data model. Technical Report SAND92–2137, Sandia National Laboratories, September 1996.
Sandia National Laboratories, 2008. CUBIT: Geometry and mesh generation toolkit. http://cubit.sandia.gov.
Tecplot. http://www.tecplot.com.
Trottenberg, 2000