MOLECULAR DETERMINANTS OF DRUG BINDING AND ACTION ON L-TYPE CALCIUM CHANNELS

Annual Review of Pharmacology and Toxicology - Tập 37 Số 1 - Trang 361-396 - 1997
Gregory H. Hockerman1, Blaise Z. Peterson1, and Barry D. Johnson1, William A. Catterall1
1Department of Pharmacology, University of Washington, Box 357280, Seattle, Washington 98195-7280

Tóm tắt

▪ Abstract  The crucial role of L-type Ca2+ channels in the initiation of cardiac and smooth muscle contraction has made them major therapeutic targets for the treatment of cardiovascular disease. L-type channels share a common pharmacological profile, including high-affinity voltage- and frequency-dependent block by the phenylalkylamines, the benz(othi)azepines, and the dihydropyridines. These drugs are thought to bind to three separate receptor sites on L-type Ca2+ channels that are allosterically linked. Results from different experimental approaches implicate the IIIS5, IIIS6, and IVS6 transmembrane segments of the α1 subunits of L-type Ca2+ channels in binding of all three classes of drugs. Site-directed mutagenesis has identified single amino acid residues within the IIIS5, IIIS6, and IVS6 transmembrane segments that are required for high-affinity binding of phenylalkylamines and/or dihydropyridines, providing further support for identification of these transmembrane segments as critical elements of the receptor sites for these two classes of drugs. The close proximity of the receptor sites for phenylalkylamines, benz(othi)azepines, and dihydropyridines raises the possibility that individual amino acid residues may be required for high-affinity binding of more than one of these ligands. Therefore, we suggest that phenylalkylamines and dihydropyridines bind to different faces of the IIIS6 and IVS6 transmembrane segments and, in some cases, bind to opposite sides of the side chains of the same amino acid residues. The results support the domain interface model for binding and channel modulation by these three classes of drugs.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.biochem.64.1.493

10.1146/annurev.ne.17.030194.002151

10.1016/0896-6273(94)90021-3

10.1016/0166-2236(95)93882-X

10.1016/0896-6273(94)90436-7

10.1038/328313a0

10.1038/340230a0

Koch WJ, 1990, J. Biol. Chem., 265, 17786, 10.1016/S0021-9258(18)38232-2

10.1016/0896-6273(91)90073-9

10.1016/0896-6273(92)90109-Q

10.1073/pnas.89.2.584

10.1101/SQB.1983.048.01.039

10.1097/00005344-198406004-00007

10.1097/00005344-199106186-00001

10.1007/BF00500915

Boles RG, 1984, J. Pharmacol. Exp. Ther., 229, 333

10.1007/BF00374372

Galper J, 1979, Mol. Pharmacol., 15, 174

Ragsdale DS, 1991, Mol. Pharmacol., 40, 756

Rampe D, 1993, Mol. Pharmacol., 44, 1240

10.1016/0014-2999(95)00240-L

10.1038/302790a0

10.1161/01.RES.55.3.336

10.1085/jgp.85.5.621

10.1085/jgp.69.4.497

10.1146/annurev.pa.24.040184.002131

Rakotoarisoa L, 1990, J. Pharmacol. Exp. Ther., 255, 942

10.1113/jphysiol.1984.sp015288

10.1113/jphysiol.1984.sp015287

10.1161/01.RES.64.5.928

10.1111/j.1600-0773.1992.tb00552.x

10.1016/0022-2828(83)90291-2

10.1007/BF00508786

Johnson BJ, 1996, Mol. Pharmacol., 50, 1388

10.1007/BF00581411

10.1113/jphysiol.1984.sp015374

10.1007/BF00374922

10.1085/jgp.98.1.63

10.1152/ajpcell.1989.257.4.C689

10.1007/BF00168564

10.1016/0014-5793(87)81354-6

10.1021/bi00305a001

10.1073/pnas.87.23.9108

10.1074/jbc.270.38.22119

10.1002/j.1460-2075.1996.tb00592.x

10.1074/jbc.271.20.11745

Reynolds IJ, 1986, J. Pharmacol. Exp. Ther., 237, 731

10.1016/0014-2999(95)00194-P

Hockerman GH, 1997, Biophys. J.

10.1038/356441a0

10.1038/366158a0

Tang S, 1993, J. Biol. Chem., 268, 13026, 10.1016/S0021-9258(19)38613-2

10.1016/0014-2999(91)90105-Y

Zobrist RH, 1990, J. Pharmacol. Exp. Ther., 253, 461

10.1021/jm00082a020

Hering S, 1993, Mol. Pharmacol., 43, 820

10.1248/cpb.21.92

10.1021/jm00082a018

10.1007/BF00586355

10.1016/0006-291X(82)91838-1

10.1016/0006-291X(85)90986-6

10.1016/0006-8993(95)00815-8

10.1016/S0968-0896(00)82134-3

Striessnig J, 1990, J. Biol. Chem., 265, 363, 10.1016/S0021-9258(19)40238-X

Naito K, 1989, J. Biol. Chem., 264, 21211, 10.1016/S0021-9258(19)30068-7

10.1016/0014-5793(93)80690-V

10.1074/jbc.271.9.5251

10.1074/jbc.271.40.24471

10.1016/S0022-2828(87)80005-6

10.1152/physrev.1994.74.2.365

10.1016/0006-291X(85)91763-2

10.1161/01.RES.64.2.338

Kass RS, 1987, Circ. Res., 61, 11

Kokubun S, 1986, Mol. Pharmacol., 30, 571

10.1073/pnas.81.20.6388

10.1073/pnas.81.15.4824

Hamilton SL, 1987, Mol. Pharmacol., 31, 221

10.1074/jbc.270.18.10540

10.1085/jgp.86.3.353

10.1113/jphysiol.1987.sp016570

10.1038/311538a0

10.1085/jgp.88.3.369

10.1085/jgp.93.6.1243

10.1085/jgp.99.3.367

10.1085/jgp.93.6.1109

10.1111/j.1476-5381.1993.tb13482.x

10.1016/0022-2828(89)90861-4

Bangalore R, 1994, Mol. Pharmacol., 46, 660

10.1016/0014-5793(84)80299-9

Galizzi JP, 1986, J. Biol. Chem., 261, 1393, 10.1016/S0021-9258(17)36105-7

Sharp AH, 1987, J. Biol. Chem., 262, 12309, 10.1016/S0021-9258(18)45353-7

10.1073/pnas.84.15.5478

Vaghy PL, 1987, J. Biol. Chem., 262, 14337, 10.1016/S0021-9258(18)47943-4

10.1111/j.1432-1033.1987.tb13311.x

10.1016/S0006-291X(87)80188-2

10.1002/j.1460-2075.1991.tb07919.x

10.1073/pnas.88.20.9203

10.1073/pnas.88.23.10769

10.1016/0014-5793(93)80321-K

10.1016/0896-6273(93)90215-D

10.1016/S0896-6273(00)80037-9

10.1113/jphysiol.1993.sp019926

10.1074/jbc.271.10.5293

Peterson BZ, 1996, Biophys. J.

10.1126/science.8503008

10.1016/0165-6147(92)90079-L

Glossmann H, 1985, Arzneimittelforschung, 35, 1917

10.1074/jbc.270.31.18201

10.1021/bi00029a010

10.1038/309453a0

10.1113/jphysiol.1984.sp015351

10.1016/0959-4388(94)90091-4

10.1016/0006-291X(84)90725-3

10.1113/jphysiol.1986.sp016266

10.1126/science.8085162

10.1006/jmbi.1994.1755

10.1016/0968-0004(90)90176-C

10.1038/340609a0

10.1016/0896-6273(95)90004-7

Deleted in proof

10.1073/pnas.88.13.5621

10.1073/pnas.89.11.5058

10.1016/0896-6273(91)90072-8

10.1038/350398a0

10.1016/0014-5793(92)81038-N