MOCVD Precursor Delivery Monitored and Controlled Using UV Spectroscopy

Springer Science and Business Media LLC - Tập 474 - Trang 69-75 - 1997
Brian J. Rappoli1, William J. DeSisto1, Tobin J. Marks2, John A. Belot2
1Naval Research Laboratory, Chemistry Division and Electronics Science and Technology Division, Washington, USA
2Department of Chemistry and Science and Technology Center for Superconductivity, Northwestern University, Evanston, USA

Tóm tắt

The glyme adducts of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)barium, Ba(hfac)2·glyme, are frequently employed as precursors in the MOCVD fabrication of HTSC thin films. The physical properties of these precursors can be modified by changing the glyme ligand in the barium complex. In this study, gas phase concentrations of two barium complexes as a function of purge time and bubbler temperature have been examined by in-situ UV spectroscopy. Also presented are the details of a UV spectrophotometric-based feedback control system designed to maintain constant gas phase concentration of 2,2,6,6-tetramethyl-3,5-heptadionate (thd) precursors, Cu(thd)2 and Y(thd)3, during MOCVD growth of mixed metal oxide films.

Tài liệu tham khảo

R. Sato, K. Takahashi, M. Yoshino, H. Kato, and S. Ohshima, Jpn. J. Appl. Phys. 32, 1590 (1993). S. Matsuno, F. Uchikawa and K. Yoshizaki, Jpn. J. Appl. Phys. 29, 947 (1990). D. L. Schulz, B. J. Hinds, D. A. Neumayer, C. L. Stern and T. J. Marks, Chem. Mater. 5, 1605 (1993). B. J. Hinds, D. L. Schulz, D. A. Neumayer, B. Han, T. J. Marks, Y. Y. Wang, V. P. Dravid, J. L. Schindler, T. P. Hogan and C. R. Kannewurf, Appl. Phys. Lett. 65, 231 (1994). R. Hiskes, S.A. Di Carolis, J.L. Young, S.S. Laderman, R.D. Jacowitz, and R.C. Taber, Appl. Phys. Lett. 59, 606 (1991). J. Zhang, R. A. Gardiner, P. S. Kirlin, R. W. Boerstler and J. Steinbeck, Appl. Phys. Lett. 61, 2884 (1992). J. P. Stagg, Chemtronics 3, 44 (1988). B. R. Butler and J. P. Stagg, J. Crystal Growth 94, 481 (1989). J. P. Stagg, J. Christer, E. J. Thrush and J. Crawley, J. Crystal Growth 120, 98 (1992). L. Huang, S.B. Turnipseed, R.C. Haltiwanger, R.M. Barkly and R.E. Sievers, Inorg. Chem. 33, 798 (1994). B.J. Rappoli and W.J. Desisto, Mat. Res. Soc. Symp. Proc. 415, 149 (1996). J. Zhao, K.H. Dahmen, H.O. Marcy, L.M. Tonge, T.J. Marks, B.W. Wessels and C.R. Kannewurf, Appl. Phys. Lett. 53, 1750 (1988). K. Timmer, K.D.M. Spee, A. Mackor, H.A. Meinema, A.L. Spek and P. van der Sluis, Inorg. Chim. Acta 190, 109 (1991). G. Malandrino, D.S. Richeson, T.J. Marks, D.C. DeGroot, J.L. Schindler and C.R. Kannewurf, Appl. Phys. Lett. 58, 182 (1991). R. Gardiner, D.W. Brown, P.S. Kirlin and A.L. Rheingold, Chem. Mater. 3, 1053 (1991). D.A. Neumayer, D.B. Studebaker, B.J. Hinds, C.L. Stern and T.J. Marks, Chem. Mater. 6, 878 (1994). B.J. Rappoli and W.J. De Sisto, Appl. Phys. Lett. 68, 2726 (1996). P. Tobaly and I.M. Watson, J. Chem. Thermodynamics 27, 1211 (1995).