MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose

Radiotherapy and Oncology - Tập 155 - Trang 131-137 - 2021
Jeremy Booth1,2, Vincent Caillet1,3, Adam Briggs1, Nicholas Hardcastle4,5, Georgios Angelis1,2, Dasantha Jayamanne1,6, Meegan Shepherd1, Alexander Podreka1, Kathryn Szymura1, Doan Trang Nguyen3,7, Per Poulsen8, Ricky O'Brien3, Benjamin Harris9, Carol Haddad1, Thomas Eade1,6, Paul Keall3
1Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
2Institute of Medical Physics, School of Physics, University of Sydney, Australia
3ACRF Image X Institute, Central Clinical School, University of Sydney, Australia
4Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
5Centre for Medical Radiation Physics, University of Wollongong, Australia
6Northern Clinical School, University of Sydney, Australia
7School of Biomedical Engineering, University of Technology Sydney, Australia
8Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
9Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia

Tài liệu tham khảo

Suh, 2008, An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients, Phys Med Biol, 53, 3623, 10.1088/0031-9155/53/13/016 Shah, 2013, Real-time tumor tracking in the lung using an electromagnetic tracking system, Int J Radiat Oncol Biol Phys, 86, 477, 10.1016/j.ijrobp.2012.12.030 Jones, 2015, Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms, Radiother Oncol, 115, 217, 10.1016/j.radonc.2015.03.029 Steiner, 2019, Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy, Radiother Oncol, 135, 65, 10.1016/j.radonc.2019.02.019 Ge, 2013, Planning 4-dimensional computed tomography (4DCT) cannot adequately represent daily intrafractional motion of abdominal tumors, Int J Radiat Oncol Biol Phys, 85, 999, 10.1016/j.ijrobp.2012.09.014 Hoogeman, 2009, Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files, Int J Radiat Oncol Biol Phys, 74, 297, 10.1016/j.ijrobp.2008.12.041 First Cancer Patient Treated With Accuray Radixact System With Synchrony Motion Tracking. Imaging Technology News online article 21/8/2020 [cited 21/9/2020]; Available from: https://www.itnonline.com/content/first-cancer-patient-treated-accuray-radixact-system-synchrony-motion-tracking. Van den Begin, 2016, Motion management during SBRT for oligometastatic cancer: results of a prospective phase II trial, Radiother Oncol, 119, 519, 10.1016/j.radonc.2016.04.020 Chang, 2003, An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system, Neurosurgery, 52, 140 Matsuo, 2014, Evaluation of dynamic tumour tracking radiotherapy with real-time monitoring for lung tumours using a gimbal mounted linac, Radiother Oncol, 112, 360, 10.1016/j.radonc.2014.08.003 Prévost, 2009, Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome, Radiother Oncol, 91, 296, 10.1016/j.radonc.2009.02.011 Keall, 2001, Motion adaptive x-ray therapy: a feasibility study, Phys Med Biol, 46, 1, 10.1088/0031-9155/46/1/301 Sawant, 2008, Management of three-dimensional intrafraction motion through real-time DMLC tracking, Med Phys, 35, 2050, 10.1118/1.2905355 Tacke, 2010, Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC, Med Phys, 37, 753, 10.1118/1.3284543 Fast, 2014, Dynamic tumor tracking using the Elekta Agility MLC, Med Phys, 41, 10.1118/1.4899175 Glitzner, 2019, MLC-tracking performance on the Elekta unity MRI-linac, Phys Med Biol, 64, p. 15NT02, 10.1088/1361-6560/ab2667 Keall, 2014, The first clinical implementation of electromagnetic transponder-guided MLC tracking, Med Phys, 41, 10.1118/1.4862509 Booth, 2016, The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR, Radiother Oncol, 121, 19, 10.1016/j.radonc.2016.08.025 Murphy, 2008, The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system, Int J Radiat Oncol Biol Phys, 72, 295, 10.1016/j.ijrobp.2008.05.036 Parikh, 2005, 4D verification of real-time accuracy of the Calypso system with lung cancer patient trajectory data, Int J Radiat Oncol Biol Phys, 63, S26, 10.1016/j.ijrobp.2005.07.053 Berbeco, 2005, Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates, Phys Med Biol, 50, 3655, 10.1088/0031-9155/50/16/001 Depuydt, 2014, Treating patients with real-time tumor tracking using the Vero gimbaled linac system: implementation and first review, Radiother Oncol, 112, 343, 10.1016/j.radonc.2014.05.017 Persson, 2014, Interobserver delineation variation in lung tumour stereotactic body radiotherapy, Br J Radiol, 85, e654, 10.1259/bjr/76424694 Bedford, 2015, Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment, Radiother Oncol, 117, 491, 10.1016/j.radonc.2015.07.044 Senthi, 2014, Investigating strategies to reduce toxicity in stereotactic ablative radiotherapy for central lung tumors, Acta Oncol, 53, 330, 10.3109/0284186X.2013.831472 Group, R.T.O., 2009 Poulsen, 2012, A method of dose reconstruction for moving targets compatible with dynamic treatments, Med Phys, 39, 6237, 10.1118/1.4754297 Caillet, 2017, MLC tracking for lung SABR reduces planning target volumes and dose to organs at risk, Radiother Oncol, 124, 18, 10.1016/j.radonc.2017.06.016 Poulsen, 2020, Simulated multileaf collimator tracking for stereotactic liver radiotherapy guided by kilovoltage intrafraction monitoring: Dosimetric gain and target overdose trends, Radiother Oncol, 144, 93, 10.1016/j.radonc.2019.11.008 Yang, 2017, Target margin design for real-time lung tumor tracking stereotactic body radiation therapy using CyberKnife Xsight Lung Tracking System, Sci Rep, 7, 1 Schnarr E, et al., Feasibility of real-time motion management on the Radixact™ System. 2017. Keall, 2018, The first clinical implementation of real-time image-guided adaptive radiotherapy using a standard linear accelerator, Radiother Oncol, 127, 6, 10.1016/j.radonc.2018.01.001 Wolthaus, 2008, Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients, Int J Radiat Oncol Biol Phys, 70, 1229, 10.1016/j.ijrobp.2007.11.042 Ehrbar, 2017, ITV, mid-ventilation, gating or couch tracking–A comparison of respiratory motion-management techniques based on 4D dose calculations, Radiother Oncol, 124, 80, 10.1016/j.radonc.2017.05.016 Bellec, 2020, ITV versus mid-ventilation for treatment planning in lung SBRT: a comparison of target coverage and PTV adequacy by using in-treatment 4D cone beam CT, Radiat Oncol, 15, 1, 10.1186/s13014-020-01496-5 Barriger, 2012, A dose–volume analysis of radiation pneumonitis in non–small cell lung cancer patients treated with stereotactic body radiation therapy, Int J Radiat Oncol Biol Phys, 82, 457, 10.1016/j.ijrobp.2010.08.056 Chang, 2012, Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer, Radiat Oncol, 7, 152, 10.1186/1748-717X-7-152 Yun, 2013, First demonstration of intrafractional tumor-tracked irradiation using 2D phantom MR images on a prototype linac-MR, Med Phys, 40, 10.1118/1.4802735