MINIREVIEW: Crystalline organic metal chalcogenides for thermoelectric conversion

Composites Communications - Tập 27 - Trang 100901 - 2021
Yue Sun1,2, Yang Li1,2, Yigang Jin1,2, Ze Li1,2, Wei Xu1,2
1Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing, 100049, China

Tài liệu tham khảo

Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255 Shi, 2020, Advanced thermoelectric design: from materials and structures to Devices, Chem. Rev., vol. 120, 7399, 10.1021/acs.chemrev.0c00026 Zhao, 2020, Recent advances in liquid-like thermoelectric materials, Adv. Funct. Mater., 30, 1903867, 10.1002/adfm.201903867 Mao, 2021, Thermoelectric cooling materials, Nat. Mater., 20, 454, 10.1038/s41563-020-00852-w Russ, 2016, Organic thermoelectric materials for energy harvesting and temperature control, Nat. Rev. Mater., 1, 16050, 10.1038/natrevmats.2016.50 Jin, 2019, Hybrid organic–inorganic thermoelectric materials and Devices, Angew. Chem. Int. Ed., 58, 15206, 10.1002/anie.201901106 Leong, 2011, One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications, Chem. Rev., 111, 688, 10.1021/cr100160e Wang, 2013, Metal–organic frameworks as A tunable platform for designing functional molecular materials, J. Am. Chem. Soc., 135, 13222, 10.1021/ja308229p Givaja, 2012, Electrical conductive coordination polymers, Chem. Soc. Rev., 41, 115, 10.1039/C1CS15092H Yan, 2016, Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly, Nat. Mater., 349 Che, 2008, Homoleptic copper(I) arylthiolates as a new class of p-type charge carriers: structures and charge mobility studies, Chem. Eur J., 14, 2965, 10.1002/chem.200700723 Low, 2010, Highly conducting two-dimensional copper(i) 4-hydroxythiophenolate network, Chem. Commun., 46, 7328, 10.1039/c0cc02348e Li, 2020, Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps, Nat. Commun., 11, 261, 10.1038/s41467-019-14136-8 Li, 2021, Enhanced thermoelectric performance and tunable polarity in 2D Cu2S-phenol superlattices composites for solar energy conversion, Nano Energy, 84, 105902, 10.1016/j.nanoen.2021.105902 Xing, 2020, Copper(I)-Based flexible organic–inorganic coordination polymer and analogues: high-power factor thermoelectrics, ACS Appl. Mater. Interfaces, 12, 53841, 10.1021/acsami.0c17148 Huang, 2017, Conductive copper benzenehexathiol coordination polymer as a hydrogen evolution catalyst, ACS Appl. Mater. Interfaces, 9, 40752, 10.1021/acsami.7b14523 Tsuchikawa, 2020, Unique thermoelectric properties induced by intrinsic nanostructuring in a polycrystalline thin-film two-dimensional metal–organic framework, copper benzenehexathiol, Phys. Status Solidi A, 217, 2000437, 10.1002/pssa.202000437 Sun, 2017, A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity, Joule, 1, 168, 10.1016/j.joule.2017.07.018 Turner, 2008, Semiconducting Lead−Sulfur−Organic network solids, J. Am. Chem. Soc., 130, 14, 10.1021/ja0770983 Huang, 2018, Highly conducting neutral coordination polymer with infinite two-dimensional silver–sulfur networks, J. Am. Chem. Soc., 140, 15153, 10.1021/jacs.8b07921 Huang, 2020, Highly conducting organic–inorganic hybrid copper sulfides CuxC6S6 (x=4 or 5.5): ligand-based oxidation-induced chemical and electronic structure modulation, Angew. Chem. Int. Ed., 59, 22602, 10.1002/anie.202009613