MINIREVIEW: Crystalline organic metal chalcogenides for thermoelectric conversion
Tài liệu tham khảo
Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255
Shi, 2020, Advanced thermoelectric design: from materials and structures to Devices, Chem. Rev., vol. 120, 7399, 10.1021/acs.chemrev.0c00026
Zhao, 2020, Recent advances in liquid-like thermoelectric materials, Adv. Funct. Mater., 30, 1903867, 10.1002/adfm.201903867
Mao, 2021, Thermoelectric cooling materials, Nat. Mater., 20, 454, 10.1038/s41563-020-00852-w
Russ, 2016, Organic thermoelectric materials for energy harvesting and temperature control, Nat. Rev. Mater., 1, 16050, 10.1038/natrevmats.2016.50
Jin, 2019, Hybrid organic–inorganic thermoelectric materials and Devices, Angew. Chem. Int. Ed., 58, 15206, 10.1002/anie.201901106
Leong, 2011, One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications, Chem. Rev., 111, 688, 10.1021/cr100160e
Wang, 2013, Metal–organic frameworks as A tunable platform for designing functional molecular materials, J. Am. Chem. Soc., 135, 13222, 10.1021/ja308229p
Givaja, 2012, Electrical conductive coordination polymers, Chem. Soc. Rev., 41, 115, 10.1039/C1CS15092H
Yan, 2016, Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly, Nat. Mater., 349
Che, 2008, Homoleptic copper(I) arylthiolates as a new class of p-type charge carriers: structures and charge mobility studies, Chem. Eur J., 14, 2965, 10.1002/chem.200700723
Low, 2010, Highly conducting two-dimensional copper(i) 4-hydroxythiophenolate network, Chem. Commun., 46, 7328, 10.1039/c0cc02348e
Li, 2020, Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps, Nat. Commun., 11, 261, 10.1038/s41467-019-14136-8
Li, 2021, Enhanced thermoelectric performance and tunable polarity in 2D Cu2S-phenol superlattices composites for solar energy conversion, Nano Energy, 84, 105902, 10.1016/j.nanoen.2021.105902
Xing, 2020, Copper(I)-Based flexible organic–inorganic coordination polymer and analogues: high-power factor thermoelectrics, ACS Appl. Mater. Interfaces, 12, 53841, 10.1021/acsami.0c17148
Huang, 2017, Conductive copper benzenehexathiol coordination polymer as a hydrogen evolution catalyst, ACS Appl. Mater. Interfaces, 9, 40752, 10.1021/acsami.7b14523
Tsuchikawa, 2020, Unique thermoelectric properties induced by intrinsic nanostructuring in a polycrystalline thin-film two-dimensional metal–organic framework, copper benzenehexathiol, Phys. Status Solidi A, 217, 2000437, 10.1002/pssa.202000437
Sun, 2017, A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity, Joule, 1, 168, 10.1016/j.joule.2017.07.018
Turner, 2008, Semiconducting Lead−Sulfur−Organic network solids, J. Am. Chem. Soc., 130, 14, 10.1021/ja0770983
Huang, 2018, Highly conducting neutral coordination polymer with infinite two-dimensional silver–sulfur networks, J. Am. Chem. Soc., 140, 15153, 10.1021/jacs.8b07921
Huang, 2020, Highly conducting organic–inorganic hybrid copper sulfides CuxC6S6 (x=4 or 5.5): ligand-based oxidation-induced chemical and electronic structure modulation, Angew. Chem. Int. Ed., 59, 22602, 10.1002/anie.202009613