Dòng chảy trượt MHD của nanofluid Maxwell trên một bề mặt kéo dài có phản ứng hóa học

Journal of the Egyptian Mathematical Society - Tập 28 - Trang 1-28 - 2020
Wubshet Ibrahim1, Mekonnen Negera2
1Department of Mathematics, Ambo University, Ambo, Ethiopia
2Department of Mathematics, Wollega University, Nekemte, Ethiopia

Tóm tắt

Nghiên cứu hiện tại xem xét ảnh hưởng của trượt và dòng chảy tại điểm ngưng trệ của chất lỏng Maxwell chuyển động lên một bề mặt kéo dài. Các phương trình vi phân thường không tuyến tính được thu được từ các phương trình vi phân riêng và được giải bằng phương pháp sai phân hữu hạn ẩn. Các tác động của các tham số điều khiển không thứ nguyên như tham số chuyển động Brown, tỷ lệ vận tốc, tham số trượt vận tốc, tham số hút/tiêm, số Lewis, tham số Maxwell chuyển động lên, trường từ, tham số nhiệt động học, tham số phản ứng hóa học, tham số trượt nhiệt, tham số trượt hoá chất và tham số nguồn nhiệt đối với trường vận tốc, đặc điểm truyền nhiệt và khối lượng được thảo luận và trình bày qua các đồ thị. Các giá trị của số Sherwood cục bộ, số Nusselt cục bộ, và hệ số ma sát bề mặt được thảo luận và trình bày qua các bảng. Kết quả chỉ ra rằng khi trường từ được tăng cường, nó làm giảm các phạm vi vận tốc và tăng cường các phạm vi nhiệt độ và nồng độ. Hơn nữa, với việc gia tăng tham số trượt vận tốc, số Nusselt cục bộ và số Sherwood cục bộ giảm.

Từ khóa

#dòng chảy trượt #Maxwell #bề mặt kéo dài #phản ứng hóa học #truyền nhiệt #truyền khối #MHD

Tài liệu tham khảo

Macha, M., Kishan, N., Chamkha, A.J.: Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propulsion Power Res. 6(1), 31–40 (2017). https://doi.org/10.1016/j.jppr.2017.01.002 Macha, M., Kishan, N.: Finite element analysis of MHD viscoelastic nanofluid flow over a stretching sheet with radiation. Process Eng. 127, 432–439 (2015). https://doi.org/10.1016/j.proeng.2015.11.393 Macha Madhu and Naikoti Kishan: MHD flow and heat transfer of Casson nanofluid over a wedge. Mech Ind 18, 210 (2017). http://dx.doi.org/https://doi.org/10.1051/meca/2016030. Srinivas, C., Reddy, Kishan, N., Macha, M.: Finite element analysis of Eyring–Powell nano fluid over an exponential stretching sheet. Int J Appl Comput Math. 4(8), 1–13 (2017). https://doi.org/10.1007/s40819-017-0438-x Madhu, M., Kishan, N., Chamkha, A.J.: MHD flow of a non-Newtonian nanofluid over a non-linearly stretching sheet in the presence of thermal radiation with heat source/sink. Eng. Comput. 33(5), 1610–1626 (2016). https://doi.org/10.1108/EC-06-2015-0174 Macha, M., Kishan, N., Chamkha, A.: Boundary layer flow and heat transfer of a non-Newtonian nanofluid over a non-linearly stretching sheet. Int. J. Numerical Methods Heat Fluid Flow. 26(7), 2198–2217 (2016). https://doi.org/10.1108/HFF-02-2015-0066 Jayachandra Babu, M., Sandeep, N.: MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects. Alexandria Eng J. 55, 2193–2201 (2016). https://doi.org/10.1016/j.aej.2016.06.009 Ramana Reddy, J.V., Anantha Kumar, K., Sugunamma, V., Sandeep N.: Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink investigated Alexandria Eng. J. 57, 1829-1838(2018). http://dx.doi.org/https://doi.org/10.1016/j.aej.2016.06.009. Vijayalakshmi, R., Sreelakshmi, K., Sandhya, G., Sarojamma, G.: Flow of upper-convected Maxwell Micropolar fluid over a stretching sheet with slip effect. Int J Innov Res Sci Eng Technol. 6(13), 148–154 (2017) Tian, X., Li, B., Hu, Z.: Convective stagnation point flow of a MHD non-Newtonian nanofluid towards a stretching plate. Int J Heat Mass Transf. 127, 768–780 (2018) Nasir, S., Islam, S., Gul, T., Shah, Z., Khan, M.A., Khan, W., Khan, A.Z., Khan, S.: Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation. Appl Nanosci. 8, 1361–1378 (2018) Khan, N.S., Zuhra, S., Shah, Z., Bonyah, E., Khan, W., Islam, S.: Eyring-Powell slip flow of nano liquid film containing graphene nanoparticles. AIP Adv. 8, 115302 (2018) Yu Bai, Yuehua Jiang, Fawang Liu and Yan Zhang: Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation. AIP Adv 7, 12530. (2017). https://doi.org/https://doi.org/10.1063/1.5011789. Imran, M.A., Riaz, M.B., Shah, N.A., Zafar, A.A.: Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary. Results Phys. 8, 1061–1067 (2018). https://doi.org/10.1016/j.rinp.2018.01.036 Elbashbeshy, E.M.A.R., Abdelgaber, K.M., Asker, H.G.: Heat and mass transfer of a Maxwell nanofluid over a stretching surface with variable thickness embedded in porous medium. Int. J. Math. Comput. Sci. 4(3), 86–98 (2018) http://www.aiscience.org/journal/ijmcs Vajravelu, K., Li, R., Dewasurendra, M., Benarroch, J., Ossi, N., Zhang, Y., Sammarco, M., Prasad, K.V.: Analysis of MHD boundary layer flow of an Upper- Convected Maxwell fluid with homogeneous-heterogeneous chemical reactions. Commun. Numerical Analysis. 2, 202–216 (2017). https://doi.org/10.5899/2017/cna-00324 Omowaye, A.J., Animasaun, I.L.: Upper-convected maxwell fluid flow wit variable thermo-physical properties over a melting surface situated in hot environment subject to thermal stratification. J. Appl. Fluid Mech. 9(4), 1777–1790 (2016). https://doi.org/10.18869/acadpub.jafm.68.235.24939 Rahbari, A., Abbasi, M., Rahimipetroudi, I., Sundén, B., Ganji, D.D., Gholami, M.: Heat transfer and MHD flow of non-Newtonian Maxwell fluid through a parallel plate channel. Mech Sci. 9, 61–70 (2018). https://doi.org/10.5194/ms-9-61-2018 Gireesha, B.J., Mahanthesh, B., Subba, R., Gorla, R., Krupalakshmi, K.L.: Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid-particle suspension. Ain Shams Eng J. 9, 735–746 (2018). https://doi.org/10.1016/j.asej.2016.04.020 Meysam Mohamadali and Nariman Ashrafi: Similarity solution for high Weissenberg number flow of upper-convected Maxwell fluid on a linearly stretching sheet. Hindawi Publishing Corporation J. Eng. (2016). https://doi.org/10.1155/2016/9718786. Sajid, M., Ahmed, B., Abbas, Z.: Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet. J. Egyptian Math. Soc. 23, 440–444 (2014). https://doi.org/10.1016/j.joems.2014.05.013 Srinivasulu, T., Bandari, S., Sumalatha, C.: The effect of viscous dissipation MHD stagnation point flow of Casson nano-fluid over stretching sheet. Global J Pure Appl Math. 13(8), 0973–1768 (2017) Wubshet, I.: Magnetohydrodynamic stagnation point flow and heat transfer of upper-convected Maxwell fluid past a stretching sheet in the presence of nanoparticles with convective heating. Front Heat Mass Transfer. 7(4), (2016). https://doi.org/10.5098/hmt.7.4 Mageswari, M., Nirmala, M.: Stagnation point flow over a stretching sheet with Newtonian heating using Laplace domain decomposition method. Int J Pure Appl Math. 110(1), 95–102 (2016). https://doi.org/10.12732/ijpam.v110i1.11 Ghaffari, A., Javed, T., Labropulu, F.: Oblique stagnation point flow of a non-Newtonian nano-fluid over a stretching surface with radiation. Therm Sci. 21(5), 2139–2153 (2017) Yasin, A., Bandari, S., Srinivasulu, T.: Numerical solution of stagnation point flows of nano fluid due to an inclined stretching sheet. Int J Comput Eng Res. 8(2), 2250–3005 (2018) Sathies Kumar, P., Gangadhar, K.: Slip flow of MHD Casson fluid over a stretching sheet with heat, chemical reaction and mass transfer is investigated by Sathies Kumar. Adv Appl Sci Res. 6(8), 205–223 (2015) Mishra, R.: MHD slip effect of Jeffrey nanofluid flow over a stretching sheet in the presence of nonlinear thermal radiation and chemical reaction. Int J Eng Sci Res Technol. 6(4), (2017) Manjula, D., Jayalakshmi, K.: Slip effects on unsteady MHD and heat transfer flow over a stretching sheet embedded with suction in a porous medium filled with a Jeffrey fluid. Int J Res. 7(8), 609–623 (2018). https://doi.org/10.1515/ijnsns-2016-0056 El-Aziz, M.A., Afify, A.A.: Influences of slip velocity and induced magnetic field on MHD stagnation-point flow and heat transfer of Casson fluid over a stretching sheet. Math Probl Eng. (2018). https://doi.org/10.1155/2018/9402836 Krishnamurthy, M.R., Prasannakumara, B.C., Gireesha, B.J.: Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng Sci Technol Int J. 19, 53–61 (2016). https://doi.org/10.1016/j.jestch.2015.06.010 Mabood, F., Shateyi, S., Rashidi, M.M., Momoniat, E., Freidoonimehr, N.: The impact of radiation and viscous dissipation on MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with chemical reaction. Adv Powder Technol. 27, 742–749 (2016). https://doi.org/10.1016/j.apt.2016.02.033 Ibrahim, S.M., Lorenzini, G., Vijaya, K.P., Raju, C.S.K.: Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int J Heat Mass Transf. 111, 346–355 (2017) Krishnaiah, M., Punnam, R., Vijayalaxmi, T., Krishna, C., Reddy, M.: Effect of chemical reaction on MHD stagnation point flow in nanofluid over a nonlinear stretching sheet with viscous dissipation and slip conditions. Int J Sci Eng Technol Res. 5(12), (2016) Lu, D.-C., Ramzan, M., Bilal, M., Chung, J.D., Farooq, U.: A numerical investigation of 3D MHD rotating flow with binary chemical reaction, activation energy and non-fourier heat flux. Commun Theor Phys. 70, 89–96 (2018). https://doi.org/10.1088/0253-6102/70/1/89 Ramzan, M., Bilal, M.: Three-dimensional flow of an elastico-viscous nanofluid with chemical reaction and magnetic field effects. J Mol Liq. 215, 212–220 (2016) www.elsevier.com/locate/molliq Ramzan, M., Ullah, N., Chung, J.D., Lu, D., Farooq, U.: Buoyancy effects on the radiative magneto micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. Sci. Rep. 7(12901), 1–15 (2017). https://doi.org/10.1038/s41598-017-13140-6 Muhammad Ramzan, Jae Dong Chung, and Naeem Ullah: Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non-linear thermal radiation. Int. J. Mech. Sci.. 130 (1-29) 31-40 (2017). https://doi.org/10.1016/j.ijmecsci.2017.06.009. Ramzana, M., Bilal, M., Chung, J.D.: Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction. 55, 1–21 (2017). https://doi.org/10.1016/j.cjph.2017.04.014 Ramzan, M., Bilal, M., Chung, J.D.: Soret and Dufour effects on three dimensional upper-convected Maxwell fluid with chemical reaction and non-linear radiative heat flux. Int. J. Chem. React. Eng. 15, 1–17 (2017). https://doi.org/10.1515/ijcre-2016-0136 Ramzan, M., Bilal, M.: Shamsa Kanwal and Jae Dong Chung: Effects of variable thermal conductivity and non-linear thermal radiation past an Eyring Powell nanofluid flow with chemical reaction. Commun. Theor. Phys. 67, 723–731 (2017). https://doi.org/10.1088/0253-6102/67/6/723 Ramzan, M., Bilal, M., Chung, J.D.: Radiative flow of Powell-Eyring magneto-nanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point. PLoS ONE. 12(1), 1–19 (2017). https://doi.org/10.1371/journal Dianchen Lu, M. Ramzan, Shafiq Ahmad, Jae Dong Chung, and Umer Farooq: Upshot of binary chemical reaction and activation energy on carbon nanotubes with Cattaneo-Christov heat flux and buoyancy effects. Phys. Fluids 29, 123103:1-14 (2017). https://doi.org/10.1063/1.5010171. Lu, D.-C., Ramzan, M., Bilal, M., Chung, J.D., Farooq, U.: Upshot of chemical species and nonlinear thermal radiation on Oldroyd-B nanofluid flow past a bi-directional stretched surface with heat generation/absorption in a porous media. Commun. Theor. Phys. 70, 71–80 (2018). https://doi.org/10.1088/0253-6102/70/1/71 Ramzan, M., Bilal, M., Chung, J.D.: Numerical simulation of magnetohydrodynamic radiative flow of Casson nanofluid with chemical reaction past a porous media. J. Comput. Theor. Nanosci. 14(12), 5788–5796 (2017). https://doi.org/10.1166/jctn.2017.7013 Ramzan, M., Gul, H., Chung, J.D.: Double stratified radiative Jeffery magneto nanofluid flow along an inclined stretched cylinder with chemical reaction and slip condition. Eur. Phys. J. Plus. 132(456), 1–17 (2017). https://doi.org/10.1140/epjp/i2017-11748-5 Lu, D., Ramzan, M., Ullah, N., Chung, J.D., Farooq, U.: Numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy. Sci. Report. 7(17008), 1–22 (2017). https://doi.org/10.1038/s41598-017-16943-9 Cebeci, T., Bradshaw, P.: Physical and computational aspects of convective heat transfer. Springer−Verlag, Berlin Heidelberg (1984) Ittedi, S., Ramya, D., Sucharitha: Slip effect of MHD heat transfer of nanofluids above a stretching sheet with chemical reaction. Int. J. Latest Eng. Res. Appl. 02(08), 10–20 (2017)