MEMS-based thermoelectric infrared sensors: A review

Dehui Xu1, Yuelin Wang1, Bin Xiong1, Tie Li1
1Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rogalski A. Infrared Detectors. New York: Gordon and Breach Science Publishers,2000

Graf A, Arndt M, Sauer M, et al. Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 2007, 18(7): R59–R75

Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46

Du C H, Lee C. Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Japanese Journal of Applied Physics, Part 1, Regular Papers & Short Notes, 2002, 41(6B): 4340–4345

Xu D, Xiong B, Wang Y. Modeling of front-etched micromachined thermopile IR detector by CMOS technology. Journal of Microelectromechanical Systems, 2010, 19(6): 1331–1340

Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors. Sensor and Actuators A: Physical, 1998, 71(1–2): 107–115

Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46

Völklein F, Baltes H. Optimization tool for the performance parameters of thermoelectric microsensors. Sensors and Actuators A: Physical, 1993, 36(1): 65–71

Kozlov A G. Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer. Sensors and Actuators A: Physical, 2000, 84(3): 259–269

Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 1. Theory. Sensors and Actuators A: Physical, 2002, 101(3): 283–298

Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 2. Practical application. Sensors and Actuators A: Physical, 2002, 101(3): 299–310

Kozlov A G. Frequency response model for thermal radiation microsensors. Measurement Science and Technology, 2009, 20(4): 045204

Escriba C, Campo E, Esteve D, et al. Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors. Sensors and Actuators A: Physical, 2005, 120(1): 267–276

Mattsson C G, Bertilsson K, Thungström G, et al. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane. Journal of Micromechanics and Microengineering, 2009, 19(5): 055016

Levin A. A numerical simulation tool for infrared thermopile detectors. In: Proceedings of 24th International Conference on Thermoelectrics. IEEE, 2005, 476–479

Elbel T, Lenggenhager R, Baltes H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors and Actuators A: Physical, 1992, 35(2): 101–106

Lahiji G R, Wise K D. A monolithic thermopile detector fabricated using integrated-circuit technology. In: Proceedings of 1980 International Electron Devices Meeting. IEEE, 1980, 26: 676–679

Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: A review. Science of Advanced Materials, 2011, 3(3): 401–419

Liao C N, Chen C, Tu K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. Journal of Applied Physics, 1999, 86(6): 3204–3208

Haenschke F, Kessler E, Dillner U, et al. A new high detectivity room temperature linear thermopile array with a D* greater than 2 ×109 cmHz1/2/W based on organic membranes. Microsystem Technologies, 2013, 19(12): 1927–1933

Lindeberg M, Yousef H, Rödjegård H, et al. A PCB-like process for vertically configured thermopiles. Journal of Micromechanics and Microengineering, 2008, 18(6): 065021

Kasalynas I, Adam A J L, Klaassen T O, et al. Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 363–369

Müller M, Budde W, Gottfried-Gottfried R, et al. A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor. Sensors and Actuators A: Physical, 1996, 54(1–3): 601–605

Sarro PM, Yashiro H, Herwaarden AW, et al. An integrated thermal infrared sensing array. Sensors and Actuators A: Physical, 1988, 14(2): 191–201

Fonollosa J, Carmona M, Santander J, et al. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149(1): 65–73

Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136(2): 546–554

Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132(2): 498–507

Schaufelbuhl A, Schneeberger N, Munch U, et al. Uncooled lowcost thermal imager based on micromachined CMOS integrated sensor array. Journal of Microelectromechanical Systems, 2001, 10(4): 503–510

von Arx M, Paul O, Baltes H. Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(2): 217–224

Baltes H, Paul O, Brand O. Micromachined thermally based CMOS microsensors. Proceedings of the IEEE, 1998, 86(8): 1660–1678

Lenggenhager R, Baltes H, Peer J, et al. Thermoelectric infrared sensors by CMOS technology. IEEE Electron Device Letters, 1992, 13(9): 454–456

Eriguchi K, Ono K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxidesemiconductor devices. Journal of Physics D: Applied Physics, 2008, 41(2): 024002

Li T, Liu Y, Zhou P, et al. High yield front-etched structure for CMOS compatible IR detector. In: Proceedings of IEEE Sensors. IEEE, 2007, 500–502

Xu D, Xiong B,Wang Y. Design, fabrication and characterization of front-etched micromachined thermopile for IR detection. Journal of Micromechanics and Microengineering, 2010, 20(11): 115004

Xu D, Xiong B,Wu G, et al. Isotropic silicon etching with XeF2 gas for wafer-level micromachining applications. Journal of Microelectromechanical Systems, 2012, 21(6): 1436–1444

Xu D, Xiong B, Wang Y, et al. Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process. Journal of Micromechanics and Microengineering, 2009, 19(12): 125003

Xu D, Xiong B, Wu G, et al. Uncooled thermoelectric infrared sensor with advanced micromachining. IEEE Sensors Journal, 2012, 12(6): 2014–2023

Roncaglia A, Mancarella F, Cardinali G C. CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 µm atmospheric window. Sensors and Actuators B: Chemical, 2007, 125(1): 214–223

Hirota M, Nakajima Y, Saito M, et al. 120 × 90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sensors and Actuators A: Physical, 2007, 135(1): 146–151

Chen X, Tang J, Xu G, et al. Process development of a novel wafer level packaging with TSV applied in high-frequency range transmission. Microsystem Technologies, 2013, 19(4): 483–491

Chen X, Xu G, Luo L. Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimension integration. Micro & Nano Letters, 2013, 8(8): 191–192

Chen X, Yan P, Tang J, et al. Development of wafer level glass frit bonding by using barrier trench technology and precision screen printing. Microelectronic Engineering, 2012, 100(100): 6–11

Xu D, Jing E, Xiong B, et al. Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Transactions on Advanced Packaging, 2010, 33(4): 904–911

Xu D, Xiong B, Wang Y. Micromachined thermopile IR detector module with high performance. IEEE Photonics Technology Letters, 2011, 23(3): 149–151