MEMS-based thermoelectric infrared sensors: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Graf A, Arndt M, Sauer M, et al. Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 2007, 18(7): R59–R75
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
Du C H, Lee C. Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Japanese Journal of Applied Physics, Part 1, Regular Papers & Short Notes, 2002, 41(6B): 4340–4345
Xu D, Xiong B, Wang Y. Modeling of front-etched micromachined thermopile IR detector by CMOS technology. Journal of Microelectromechanical Systems, 2010, 19(6): 1331–1340
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors. Sensor and Actuators A: Physical, 1998, 71(1–2): 107–115
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
Völklein F, Baltes H. Optimization tool for the performance parameters of thermoelectric microsensors. Sensors and Actuators A: Physical, 1993, 36(1): 65–71
Kozlov A G. Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer. Sensors and Actuators A: Physical, 2000, 84(3): 259–269
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 1. Theory. Sensors and Actuators A: Physical, 2002, 101(3): 283–298
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 2. Practical application. Sensors and Actuators A: Physical, 2002, 101(3): 299–310
Kozlov A G. Frequency response model for thermal radiation microsensors. Measurement Science and Technology, 2009, 20(4): 045204
Escriba C, Campo E, Esteve D, et al. Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors. Sensors and Actuators A: Physical, 2005, 120(1): 267–276
Mattsson C G, Bertilsson K, Thungström G, et al. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane. Journal of Micromechanics and Microengineering, 2009, 19(5): 055016
Levin A. A numerical simulation tool for infrared thermopile detectors. In: Proceedings of 24th International Conference on Thermoelectrics. IEEE, 2005, 476–479
Elbel T, Lenggenhager R, Baltes H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors and Actuators A: Physical, 1992, 35(2): 101–106
Lahiji G R, Wise K D. A monolithic thermopile detector fabricated using integrated-circuit technology. In: Proceedings of 1980 International Electron Devices Meeting. IEEE, 1980, 26: 676–679
Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: A review. Science of Advanced Materials, 2011, 3(3): 401–419
Liao C N, Chen C, Tu K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. Journal of Applied Physics, 1999, 86(6): 3204–3208
Haenschke F, Kessler E, Dillner U, et al. A new high detectivity room temperature linear thermopile array with a D* greater than 2 ×109 cmHz1/2/W based on organic membranes. Microsystem Technologies, 2013, 19(12): 1927–1933
Lindeberg M, Yousef H, Rödjegård H, et al. A PCB-like process for vertically configured thermopiles. Journal of Micromechanics and Microengineering, 2008, 18(6): 065021
Kasalynas I, Adam A J L, Klaassen T O, et al. Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 363–369
Müller M, Budde W, Gottfried-Gottfried R, et al. A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor. Sensors and Actuators A: Physical, 1996, 54(1–3): 601–605
Sarro PM, Yashiro H, Herwaarden AW, et al. An integrated thermal infrared sensing array. Sensors and Actuators A: Physical, 1988, 14(2): 191–201
Fonollosa J, Carmona M, Santander J, et al. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149(1): 65–73
Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136(2): 546–554
Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132(2): 498–507
Schaufelbuhl A, Schneeberger N, Munch U, et al. Uncooled lowcost thermal imager based on micromachined CMOS integrated sensor array. Journal of Microelectromechanical Systems, 2001, 10(4): 503–510
von Arx M, Paul O, Baltes H. Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(2): 217–224
Baltes H, Paul O, Brand O. Micromachined thermally based CMOS microsensors. Proceedings of the IEEE, 1998, 86(8): 1660–1678
Lenggenhager R, Baltes H, Peer J, et al. Thermoelectric infrared sensors by CMOS technology. IEEE Electron Device Letters, 1992, 13(9): 454–456
Eriguchi K, Ono K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxidesemiconductor devices. Journal of Physics D: Applied Physics, 2008, 41(2): 024002
Li T, Liu Y, Zhou P, et al. High yield front-etched structure for CMOS compatible IR detector. In: Proceedings of IEEE Sensors. IEEE, 2007, 500–502
Xu D, Xiong B,Wang Y. Design, fabrication and characterization of front-etched micromachined thermopile for IR detection. Journal of Micromechanics and Microengineering, 2010, 20(11): 115004
Xu D, Xiong B,Wu G, et al. Isotropic silicon etching with XeF2 gas for wafer-level micromachining applications. Journal of Microelectromechanical Systems, 2012, 21(6): 1436–1444
Xu D, Xiong B, Wang Y, et al. Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process. Journal of Micromechanics and Microengineering, 2009, 19(12): 125003
Xu D, Xiong B, Wu G, et al. Uncooled thermoelectric infrared sensor with advanced micromachining. IEEE Sensors Journal, 2012, 12(6): 2014–2023
Roncaglia A, Mancarella F, Cardinali G C. CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 µm atmospheric window. Sensors and Actuators B: Chemical, 2007, 125(1): 214–223
Hirota M, Nakajima Y, Saito M, et al. 120 × 90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sensors and Actuators A: Physical, 2007, 135(1): 146–151
Chen X, Tang J, Xu G, et al. Process development of a novel wafer level packaging with TSV applied in high-frequency range transmission. Microsystem Technologies, 2013, 19(4): 483–491
Chen X, Xu G, Luo L. Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimension integration. Micro & Nano Letters, 2013, 8(8): 191–192
Chen X, Yan P, Tang J, et al. Development of wafer level glass frit bonding by using barrier trench technology and precision screen printing. Microelectronic Engineering, 2012, 100(100): 6–11
Xu D, Jing E, Xiong B, et al. Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Transactions on Advanced Packaging, 2010, 33(4): 904–911